Using in situ X-ray absorption spectroscopy to study the local structure and oxygen ion conduction mechanism in (La0.6Sr0.4)(Co0.2Fe0.8)O3−δ

2012 ◽  
Vol 192 ◽  
pp. 38-46 ◽  
Author(s):  
Takanori Itoh ◽  
Masanobu Nakayama
Author(s):  
Takanori Itoh ◽  
Saori Shirasaki ◽  
Hironori Ofuchi ◽  
Sayaka Hirayama ◽  
Tetsuo Honma ◽  
...  

(La0.6Sr0.4)(Co0.2Fe0.8)O3–δ (LSCF) has been promised as a cathode material of solid oxide fuel cells at intermediate temperatures. Despite the many previous studies of LSCF that have been reported, the role of Co and Fe atoms in the oxygen ion conduction is still unclear. In this work, we aimed at presenting each valence, oxygen chemical diffusion coefficient (Dchem) and activation energy (Ea) related to Co and Fe in LSCF by in situ X-ray absorption spectroscopy (XAS) at high temperatures and during reduction. For quantitative analysis of X-ray absorption near edge structure (XANES) spectroscopy, these results indicated that the Co valence decreased more easily than the Fe valence. On the other hand, from relaxation plots of the Co and Fe valence during reduction, the values of Dchem and Ea related to Co and Fe were nearly equal. Considering equations showing the oxygen ion conductivity, these results would indicate that oxygen ion conductivity was contributed by Co with more oxygen vacancies rather than Fe. According to these results, a structural model with and without oxygen vacancies and the oxygen ion conduction mechanism of LSCF was speculated, that is, we found that oxygen ion conductivity was more closely related to Co than Fe in LSCF by direct observations of in situ XAS.


2019 ◽  
Author(s):  
Jisue Moon ◽  
Carter Abney ◽  
Dmitriy Dolzhnikov ◽  
James M. Kurley ◽  
Kevin A. Beyer ◽  
...  

The local structure of dilute CrCl<sub>3</sub> in a molten MgCl<sub>2</sub>:KCl salt was investigated by <i>in situ</i> x-ray absorption spectroscopy (XAS) at temperatures from room temperature to 800<sup>o</sup>C. This constitutes the first experiment where dilute Cr speciation is explored in a molten chloride salt, ostensibly due to the compounding challenges arising from a low Cr concentration in a matrix of heavy absorbers at extreme temperatures. CrCl<sub>3</sub> was confirmed to be the stable species between 200 and 500<sup>o</sup>C, while mobility of metal ions at higher temperature (>700<sup>o</sup>C) prevented confirmation of the local structure.


2019 ◽  
Author(s):  
Jisue Moon ◽  
Carter Abney ◽  
Dmitriy Dolzhnikov ◽  
James M. Kurley ◽  
Kevin A. Beyer ◽  
...  

The local structure of dilute CrCl<sub>3</sub> in a molten MgCl<sub>2</sub>:KCl salt was investigated by <i>in situ</i> x-ray absorption spectroscopy (XAS) at temperatures from room temperature to 800<sup>o</sup>C. This constitutes the first experiment where dilute Cr speciation is explored in a molten chloride salt, ostensibly due to the compounding challenges arising from a low Cr concentration in a matrix of heavy absorbers at extreme temperatures. CrCl<sub>3</sub> was confirmed to be the stable species between 200 and 500<sup>o</sup>C, while mobility of metal ions at higher temperature (>700<sup>o</sup>C) prevented confirmation of the local structure.


2015 ◽  
Vol 17 (28) ◽  
pp. 18761-18767 ◽  
Author(s):  
D. P. Volanti ◽  
A. A. Felix ◽  
P. H. Suman ◽  
E. Longo ◽  
J. A. Varela ◽  
...  

X-ray absorption near edge structure (XANES) and electrical measurements were used to elucidate the local structure and electronic changes of copper(ii) oxide (CuO) nanostructures under working conditions.


2006 ◽  
Vol 99 (6) ◽  
pp. 063701 ◽  
Author(s):  
Aniruddha Deb ◽  
Uwe Bergmann ◽  
Stephen P. Cramer ◽  
Elton J. Cairns

2019 ◽  
Vol 48 (21) ◽  
pp. 7122-7129 ◽  
Author(s):  
Chia-Jui Chang ◽  
You-Chiuan Chu ◽  
Hao-Yu Yan ◽  
Yen-Fa Liao ◽  
Hao Ming Chen

The state-of-art RuO2 catalyst for the oxygen evolution reaction (OER) is measured by using in situ X-ray absorption spectroscopy (XAS) to elucidate the structural transformation during catalyzing the reaction in acidic and alkaline conditions.


Sign in / Sign up

Export Citation Format

Share Document