On the stability properties of a damped oscillator with a periodically time-varying mass

2011 ◽  
Vol 330 (13) ◽  
pp. 3257-3269 ◽  
Author(s):  
W.T. van Horssen ◽  
O.V. Pischanskyy
Author(s):  
W. T. van Horssen ◽  
O. V. Pischanskyy ◽  
J. L. A. Dubbeldam

In this paper the forced vibrations of a linear, single degree of freedom oscillator (sdofo) with a time-varying mass will be studied. The forced vibrations are due to small masses which are periodically hitting and leaving the oscillator with different velocities. Since these small masses stay for some time on the oscillator surface the effective mass of the oscillator will periodically vary in time. Not only solutions of the oscillator equation will be constructed, but also the stability properties, and the existence of periodic solutions will be discussed.


Author(s):  
Abbas Zabihi Zonouz ◽  
Mohammad Ali Badamchizadeh ◽  
Amir Rikhtehgar Ghiasi

In this paper, a new method for designing controller for linear switching systems with varying delay is presented concerning the Hurwitz-Convex combination. For stability analysis the Lyapunov-Krasovskii function is used. The stability analysis results are given based on the linear matrix inequalities (LMIs), and it is possible to obtain upper delay bound that guarantees the stability of system by solving the linear matrix inequalities. Compared with the other methods, the proposed controller can be used to get a less conservative criterion and ensures the stability of linear switching systems with time-varying delay in which delay has way larger upper bound in comparison with the delay bounds that are considered in other methods. Numerical examples are given to demonstrate the effectiveness of proposed method.


Meccanica ◽  
2021 ◽  
Author(s):  
Dóra Patkó ◽  
Ambrus Zelei

AbstractFor both non-redundant and redundant systems, the inverse kinematics (IK) calculation is a fundamental step in the control algorithm of fully actuated serial manipulators. The tool-center-point (TCP) position is given and the joint coordinates are determined by the IK. Depending on the task, robotic manipulators can be kinematically redundant. That is when the desired task possesses lower dimensions than the degrees-of-freedom of a redundant manipulator. The IK calculation can be implemented numerically in several alternative ways not only in case of the redundant but also in the non-redundant case. We study the stability properties and the feasibility of a tracking error feedback and a direct tracking error elimination approach of the numerical implementation of IK calculation both on velocity and acceleration levels. The feedback approach expresses the joint position increment stepwise based on the local velocity or acceleration of the desired TCP trajectory and linear feedback terms. In the direct error elimination concept, the increment of the joint position is directly given by the approximate error between the desired and the realized TCP position, by assuming constant TCP velocity or acceleration. We investigate the possibility of the implementation of the direct method on acceleration level. The investigated IK methods are unified in a framework that utilizes the idea of the auxiliary input. Our closed form results and numerical case study examples show the stability properties, benefits and disadvantages of the assessed IK implementations.


2020 ◽  
Vol 16 (3) ◽  
pp. 255-269
Author(s):  
Enrico Bozzo ◽  
Paolo Vidoni ◽  
Massimo Franceschet

AbstractWe study the stability of a time-aware version of the popular Massey method, previously introduced by Franceschet, M., E. Bozzo, and P. Vidoni. 2017. “The Temporalized Massey’s Method.” Journal of Quantitative Analysis in Sports 13: 37–48, for rating teams in sport competitions. To this end, we embed the temporal Massey method in the theory of time-varying averaging algorithms, which are dynamic systems mainly used in control theory for multi-agent coordination. We also introduce a parametric family of Massey-type methods and show that the original and time-aware Massey versions are, in some sense, particular instances of it. Finally, we discuss the key features of this general family of rating procedures, focusing on inferential and predictive issues and on sensitivity to upsets and modifications of the schedule.


1970 ◽  
Vol 18 (2) ◽  
pp. 267-281 ◽  
Author(s):  
James H. Taylor ◽  
Kumpati S. Narendra

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Ding ◽  
Hong-Bing Zeng ◽  
Wei Wang ◽  
Fei Yu

This paper investigates the stability of static recurrent neural networks (SRNNs) with a time-varying delay. Based on the complete delay-decomposing approach and quadratic separation framework, a novel Lyapunov-Krasovskii functional is constructed. By employing a reciprocally convex technique to consider the relationship between the time-varying delay and its varying interval, some improved delay-dependent stability conditions are presented in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the merits and the effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document