Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation

2017 ◽  
Vol 406 ◽  
pp. 146-160 ◽  
Author(s):  
Yonggang Leng ◽  
Dan Tan ◽  
Jinjun Liu ◽  
Yuyang Zhang ◽  
Shengbo Fan
Author(s):  
Saman Nezami ◽  
HyunJun Jung ◽  
Myung Kyun Sung ◽  
Soobum Lee

This paper presents mathematical modeling of an energy harvester (EH) for a wireless structure health monitoring (SHM) system in wind turbine blades. The harvester consists of a piezoelectric energy harvester (PEH) beam, a gravity-induced disk, and magnets attached to both the beam and the disk. An electromechanical model of the proposed EH is developed using the energy method with repelling magnetic force considered. The three coupled equations — the motion of the disk, the vibration of the beam, and the voltage output — are derived and solved using ODE45 in MATLAB software. The result showed the blade rotation speed affects the output angular velocity of disk and the output PEH voltage. That is, as the blade speed increases, the disk angular velocity becomes nonlinear and chaotic which is more beneficial to generate larger power.


2021 ◽  
Vol 239 ◽  
pp. 114246
Author(s):  
Shuailing Sun ◽  
Yonggang Leng ◽  
Xukun Su ◽  
Yuyang Zhang ◽  
Xiaoyu Chen ◽  
...  

2014 ◽  
Vol 14 (2) ◽  
pp. 247-266 ◽  
Author(s):  
Hongyan Wang ◽  
Lihua Tang ◽  
Xiaobiao Shan ◽  
Tao Xie ◽  
Yaowen Yang

2019 ◽  
Vol 97 (4) ◽  
pp. 2371-2397 ◽  
Author(s):  
Guangqing Wang ◽  
Wei-Hsin Liao ◽  
Zexiang Zhao ◽  
Jiangping Tan ◽  
Sujuan Cui ◽  
...  

Author(s):  
Sihong Zhao ◽  
Alper Erturk

Vibration-based energy harvesting has been heavily researched over the last decade with a primary focus on resonant excitation. However, ambient vibrational energy often has broader frequency content than a single harmonic, and in many cases it is entirely stochastic. As compared to the literature of deterministic energy harvesting, very few authors presented modeling approaches for energy harvesting from broadband random vibrations. These efforts have combined the input statistical information with the single-degree-of-freedom (SDOF) dynamics of the energy harvester to express the statistical electromechanical response characteristics. In most cases, the motion input (base acceleration) is assumed to be ideal white noise. White noise has a flat power spectral density (PSD) that might in fact excite higher vibration modes of an electroelastic energy harvester. In particular, piezoelectric energy harvesters constitute such continuous electroelastic systems with more than one vibration mode. This paper presents modeling and simulations of piezoelectric energy harvesting from broadband random vibrations based on distributed-parameter electroelastic solution. For white noise–type base acceleration of a given PSD level, first the general solution of the distributed-parameter problem is given. Closed-form representations are extracted for the single-mode case and these are analogous to the SDOF equations reported in the literature of energy harvesting. It is reported that the single-mode predictions might result in significant mismatch as compared to multi-mode predictions. Using the electroelastic solution, soft and hard piezoelectric power generators are compared under broadband random excitation. Shunt damping effect of power generation on the stochastic vibration response under broadband random excitation is also reported.


2021 ◽  
Vol 572 (1) ◽  
pp. 71-93
Author(s):  
Suresh S. Balpande ◽  
Rajesh S. Pande ◽  
Rajendra M. Patrikar

Author(s):  
Junyi Cao ◽  
Shengxi Zhou ◽  
Daniel J. Inman

This paper investigates the nonlinear dynamic characteristics of a magnetically coupled piezoelectric energy harvesters under low frequency excitation, where the angle of external magnetic field is adjustable. The nonlinear dynamic equation with the identified nonlinear magnetic force is derived to describe the electromechanical interaction of variable inclination angle harvesters. The effect of excitation amplitude and frequency on dynamic behavior is proposed by using the phase trajectory and bifurcation diagram. The numerical analysis shows that a rotatable magnetically coupling energy harvesting system exhibits rich nonlinear characteristics with the change of external magnet inclination angle. The nonlinear route to and from large amplitude high energy motion can be clearly observed. It is demonstrated numerically and experimentally that lumped parameters equations with an identified polynomials for magnetic force could adequately describe the characteristics of nonlinear energy harvester. The rotating magnetically coupled energy harvester possesses the usable frequency bandwidth over a wide range of low frequency excitation by adjusting the angular orientation.


2018 ◽  
Vol 7 (3.7) ◽  
pp. 95
Author(s):  
Li Wah Thong ◽  
Yu Jing Bong ◽  
Swee Leong Kok ◽  
Roszaidi Ramlan

The utilization of vibration energy harvesters as a substitute to batteries in wireless sensors has shown prominent interest in the literature. Various approaches have been adapted in the energy harvesters to competently harvest vibrational energy over a wider spectrum of frequencies with optimize power output.   A typical bistable piezoelectric energy harvester, where the influence of magnetic field is induced into a linear piezoelectric cantilever, is designed and analyzed in this paper. The exploitations of the magnetic force specifically creates nonlinear response and bistability in the energy harvester that extends the operational frequency spectrum for optimize performance.  Further analysis on the effects of axial spacing displacement between two repulsive magnets of the harvester, in terms of x-axis (horizontal) and z-axis (vertical) on its natural resonant frequency and performance based on the frequency response curve are investigated for realizing optimal power output. Experimental results show that by selecting the optimal axial spacing displacement, the vibration energy harvester can be designed to produce maximized output power in an improved broadband of frequency spectrum.  


Sign in / Sign up

Export Citation Format

Share Document