Energy Harvesting From Broadband Random Vibrations: Comparison of Single-Mode and Multi-Mode Electroelastic Solutions

Author(s):  
Sihong Zhao ◽  
Alper Erturk

Vibration-based energy harvesting has been heavily researched over the last decade with a primary focus on resonant excitation. However, ambient vibrational energy often has broader frequency content than a single harmonic, and in many cases it is entirely stochastic. As compared to the literature of deterministic energy harvesting, very few authors presented modeling approaches for energy harvesting from broadband random vibrations. These efforts have combined the input statistical information with the single-degree-of-freedom (SDOF) dynamics of the energy harvester to express the statistical electromechanical response characteristics. In most cases, the motion input (base acceleration) is assumed to be ideal white noise. White noise has a flat power spectral density (PSD) that might in fact excite higher vibration modes of an electroelastic energy harvester. In particular, piezoelectric energy harvesters constitute such continuous electroelastic systems with more than one vibration mode. This paper presents modeling and simulations of piezoelectric energy harvesting from broadband random vibrations based on distributed-parameter electroelastic solution. For white noise–type base acceleration of a given PSD level, first the general solution of the distributed-parameter problem is given. Closed-form representations are extracted for the single-mode case and these are analogous to the SDOF equations reported in the literature of energy harvesting. It is reported that the single-mode predictions might result in significant mismatch as compared to multi-mode predictions. Using the electroelastic solution, soft and hard piezoelectric power generators are compared under broadband random excitation. Shunt damping effect of power generation on the stochastic vibration response under broadband random excitation is also reported.

Author(s):  
Sihong Zhao ◽  
Alper Erturk

Energy harvesting from ambient environment has received increasing attention over the last decade due to the need for minimizing the dependence on conventional batteries in wireless applications. Among the methods of vibration-to-electricity conversion, piezoelectric transduction has been investigated by numerous research groups due to the ease of application and high power density offered by piezoelectric materials. Electromechanical modeling efforts of piezoelectric energy harvesters have been mostly focused on deterministic forms of excitation input, as in the typical case of harmonic excitation. In most practical applications, however, ambient vibrational energy is often stochastic with broad frequency content. This paper presents analytical and numerical modeling, simulations, and experimental validations of piezoelectric energy harvesting from broadband random vibrations. The models employed herein are based on distributed-parameter electroelastic solution to ensure that the effects of higher vibration modes are included. The goal is to predict the expected value of the power output in terms of the given power spectral density (PSD) or time history of the random vibration input. The analytical estimations are based on the PSD of broadband random base excitation and distributed-parameter frequency response functions (FRFs) of the coupled voltage and vibration response. The numerical simulations use the Fourier series representation of base acceleration history in an ordinary differential equation solver that employs first-order electroelastic equations. The simulations are compared against the experiments for a brass-reinforced PZT-5H bimorph under different random excitation levels. The analytical and numerical simulations exhibit very good agreement with the experimental measurements. Soft and hard ceramic and single crystal bimorphs (made of PZT-5H, PZT-8, PMN-PZT, and PMN-PZT-Mn) are compared for broadband random excitation through a theoretical case study.


Author(s):  
Wanlu Zhou ◽  
Gopinath Reddy Penamalli ◽  
Lei Zuo

A novel piezoelectric energy harvester with multi-mode dynamic magnifier is proposed and investigated in this paper, which is capable of significantly increasing the bandwidth and the energy harvested from the ambient vibration. The design comprises of an multi-mode intermediate beam with a tip mass, called “dynamic magnifier”, and an “energy harvesting beam with a tip mass. The piezoelectric film is adhered to the harvesting beam to harvest the vibration energy. By properly designing the parameters, such as the length, width and thickness of the two beams and the weight of the two tip masses, we can virtually magnify the motion in all the resonance frequencies of the energy harvesting beam, in a similar way as designing a new beam-type tuned mass damper (TMD) to damp the resonance frequencies of all the modes of the primary beam. Theoretical analysis, finite element simulation, and the experiment study are carried out. The results show that voltage produced by the harvesting beam is amplified for efficient energy harvesting over a broader frequency range, while the peaks of the first three modes of the primary beam can be effectively mitigated simultaneously. The experiment demonstrates 25.5 times more energy harvesting capacity than the conventional cantilever type harvester in broadband frequency 3–300Hz, and over 1000 times more energy close to the first three resonances of harvesting beam.


Author(s):  
Michael W. Shafer ◽  
Robert MacCurdy ◽  
Ephrahim Garcia

Discrete animal-mounted sensors and tags have a wide range of potential applications for researching wild animals and their environments. The devices could be used to monitor location, metabolic output, or used as environmental monitoring sentinels. These applications are made possible by recent decreases in the size, mass, and power consumption of modern microelectronics. Despite these performance increases, for extended deployments these systems need to generate power in-situ. In this work, we explore a device that was recently deployed to test the concept of vibrational piezoelectric energy harvesting on flying birds. We explain the development of the device and introduce test results conducted on flying pigeons (Columba livia). The 12 g testing device consisted of a miniature data acquisition system and a piezoelectric energy harvester. The system recorded both the harvested power and the in-flight accelerations of the bird. The energy harvester included a wireless receiver, battery and linear servo. By remotely actuating the linear servo, we were able to arrest the energy harvester for portions of the flight. In doing so, we will be able to compare flight accelerations of a bird with a simple proof mass and with a dynamic mass without having to stop the flight of the bird. The comparison of these two cases allows for the assessment of the feasibility of employing vibrational energy harvesting on a flying bird. We present the initial results of this testing with regard to the harvested power and the in-flight acceleration profiles.


2008 ◽  
Vol 20 (5) ◽  
pp. 529-544 ◽  
Author(s):  
Alper Erturk ◽  
Jamil M. Renno ◽  
Daniel J. Inman

Cantilevered piezoelectric energy harvesters have been extensively investigated in the literature of energy harvesting. As an alternative to conventional cantilevered beams, this article presents the L-shaped beam-mass structure as a new piezoelectric energy harvester configuration. This structure can be tuned to have the first two natural frequencies relatively close to each other, resulting in the possibility of a broader band energy harvesting system. This article describes the important features of the L-shaped piezoelectric energy harvester configuration and develops a linear distributed parameter model for predicting the electromechanically coupled voltage response and displacement response of the harvester structure. After deriving the coupled distributed parameter model, a case study is presented to investigate the electrical power generation performance of the L-shaped energy harvester. A direct application of the L-shaped piezoelectric energy harvester configuration is proposed for use as landing gears in unmanned air vehicle applications and a case study is presented where the results of the L-shaped — energy harvester — landing gear are favorably compared against the published experimental results of a curved beam configuration used for the same purpose.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1537
Author(s):  
Neetu Kumari ◽  
Micky Rakotondrabe

In recent years, energy harvesting from ambient vibrations using piezoelectric materials has become the center of attention due to the fact that it has the potential to replace batteries, providing an easy way to power wireless and low power sensors and electronic devices. Piezoelectric material has been extensively used in energy harvesting technologies. However, the most commercially available and widely used piezoelectric materials are lead-based, Pb [ZrxTi1−x] O3 (PZT), which contains more than 60 weight percent lead (Pb). Due to its extremely hazardous effects on lead elements, there is a strong need to substitute PZT with new lead-free materials that have comparable properties to those of PZT. Lead-free lithium niobate (LiNbO3) piezoelectric material can be considered as a substitute for lead-based piezoelectric materials for vibrational energy scavenging applications. LiNbO3 crystal has a lower dielectric constant comparison to the conventional piezoceramics (for instance, PZT); however, at the same time, LiNbO3 (LN) single crystal presents a figure of merits similar to that of PZT, which makes it the most suitable choice for a vibrational energy harvester based on lead-free materials. The implementation was carried out using a global optimization approach including a thick single-crystal film on a metal substrate with optimized clamped capacitance for better impedance matching conditions. A lot of research shows that standard designs such as linear piezoelectric energy harvesters are not a prominent solution as they can only operate in a narrow bandwidth because of their single high resonant peak in their frequency spectrum. In this paper, we propose, and experimentally validate, a novel lead-free piezoelectric energy harvester to harness electrical energy from wideband, low-frequency, and low-amplitude ambient vibration. To reach this target, the harvester is designed to combine multi-frequency and nonlinear techniques. The proposed energy harvesting system consists of six piezoelectric cantilevers of different sizes and different resonant frequencies. Each is based on lead-free lithium niobate piezoelectric material coupled with a shape memory alloy (nitinol) substrate. The design is in the form of a circular ring to which the cantilevers are embedded to create nonlinear behavior when excited with ambient vibrations. The finite element simulation and the experimental results confirm that the proposed lead-free harvester design is efficient at low frequencies, particularly different frequencies below 250 Hz.


2019 ◽  
Vol 30 (20) ◽  
pp. 3136-3145 ◽  
Author(s):  
Zhengqiu Xie ◽  
Shengxi Zhou ◽  
Jitao Xiong ◽  
Wenbin Huang

Piezoelectric vibration energy harvesting is a promising technique to power wireless sensor networks. This article originally presents a magnetically coupled asymmetric monostable dual-cantilever piezoelectric energy harvester consisting of a generating piezoelectric cantilever beam and an auxiliary cantilever beam. Theoretical and experimental results both verify that the asymmetric harvester has the superior performance compared with the conventional magnetically coupled symmetric bistable dual-cantilever piezoelectric energy harvester, yielding higher voltage output under different magnetic coupling intensities and different power densities of the band-limited Gaussian white noise random excitation. More importantly, the mechanical strain of the asymmetric harvester is much smaller than that of the symmetric harvester, being lower than half of the latter one under strong magnetic coupling. Therefore, due to its higher energy conversion efficiency and better durability, the proposed asymmetric harvester is beneficial for practical environment vibration energy harvesting.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3151
Author(s):  
Shuo Yang ◽  
Bin Wu ◽  
Xiucheng Liu ◽  
Mingzhi Li ◽  
Heying Wang ◽  
...  

In this study, a novel piezoelectric energy harvester (PEH) based on the array composite spherical particle chain was constructed and explored in detail through simulation and experimental verification. The power test of the PEH based on array composite particle chains in the self-powered system was realized. Firstly, the model of PEH based on the composite spherical particle chain was constructed to theoretically realize the collection, transformation, and storage of impact energy, and the advantages of a composite particle chain in the field of piezoelectric energy harvesting were verified. Secondly, an experimental system was established to test the performance of the PEH, including the stability of the system under a continuous impact load, the power adjustment under different resistances, and the influence of the number of particle chains on the energy harvesting efficiency. Finally, a self-powered supply system was established with the PEH composed of three composite particle chains to realize the power supply of the microelectronic components. This paper presents a method of collecting impact energy based on particle chain structure, and lays an experimental foundation for the application of a composite particle chain in the field of piezoelectric energy harvesting.


Author(s):  
Virgilio J Caetano ◽  
Marcelo A Savi

Energy harvesting from ambient vibration through piezoelectric devices has received a lot of attention in recent years from both academia and industry. One of the main challenges is to develop devices capable of adapting to diverse sources of environmental excitation, being able to efficiently operate over a broadband frequency spectrum. This work proposes a novel multimodal design of a piezoelectric energy harvesting system to harness energy from a wideband ambient vibration source. Circular-shaped and pizza-shaped designs are employed as candidates for the device, comparing their performance with classical beam-shaped devices. Finite element analysis is employed to model system dynamics using ANSYS Workbench. An optimization procedure is applied to the system aiming to seek a configuration that can extract energy from a broader frequency spectrum and maximize its output power. A comparative analysis with conventional energy harvesting systems is performed. Numerical simulations are carried out to investigate the harvester performances under harmonic and random excitations. Results show that the proposed multimodal harvester has potential to harness energy from broadband ambient vibration sources presenting performance advantages in comparison to conventional single-mode energy harvesters.


2016 ◽  
Vol 09 (05) ◽  
pp. 1650069 ◽  
Author(s):  
Yaoze Liu ◽  
Tongqing Yang ◽  
Fangming Shu

Since the piezoelectric properties were used for energy harvesting, almost all forms of energy harvester needs to be bonded with a mass block to achieve pre-stress. In this article, disc type piezoelectric energy harvester is chosen as the research object and the relationship between mass bonding area and power output is studied. It is found that if the bonding area is changed as curved, which is usually complanate in previous studies, the deformation of the circular piezoelectric ceramic is more uniform and the power output is enhanced. In order to test the change of the deformation, we spray several homocentric annular electrodes on the surface of a piece of bare piezoelectric ceramic and the output of each electrode is tested. Through this optimization method, the power output is enhanced to more than 11[Formula: see text]mW for a matching load about 24[Formula: see text]k[Formula: see text] and a tip mass of 30[Formula: see text]g at its resonant frequency of 139[Formula: see text]Hz.


Sign in / Sign up

Export Citation Format

Share Document