scholarly journals Vibrational modes for the internal characterization of a full-scale Transnuclear-32 dry storage cask for spent nuclear fuel assemblies

2019 ◽  
Vol 460 ◽  
pp. 114881 ◽  
Author(s):  
Kevin Yi-Wei Lin ◽  
Joel Mobley ◽  
Wayne E. Prather ◽  
Zhiqu Lu ◽  
Gautam Priyadarshan ◽  
...  
2017 ◽  
Author(s):  
Kevin Yi-Wei Lin ◽  
Wayne Prather ◽  
Zhiqu Lu ◽  
Joel Mobley ◽  
Gautam Priyadarshan ◽  
...  

2017 ◽  
Author(s):  
Kevin Yi-Wei Lin ◽  
Wayne Prather ◽  
Zhiqu Lu ◽  
Joel Mobley ◽  
Gautam Priyadarshan ◽  
...  

2020 ◽  
Vol MA2020-02 (13) ◽  
pp. 1331-1331
Author(s):  
Charles Bryan ◽  
Andrew Knight ◽  
Ryan Katona ◽  
Rebecca Filardo Schaller

2017 ◽  
Vol 142 (4) ◽  
pp. 2517-2517
Author(s):  
Kevin Y. Lin ◽  
Wayne E. Prather ◽  
Zhiqu Lu ◽  
Joel Mobley ◽  
Josh R. Gladden

2020 ◽  
pp. 81-84
Author(s):  
S. Alyokhina ◽  
A. Kostikov ◽  
I. Koriahina

Now only one Dry Storage Facility of Spent Nuclear Fuel (DSFSNF) is operated in Ukraine. It is the facility on Zaporizhska NPP. Many different thermal investigations were done for ventilated containers of DSFSNF. In this study the generalization of scientific approaches to the thermal safety assessment are carried out. The multi-stage approach to the definition of thermal state of containers' group, single container, spent fuel assemblies and fuel rods was developed. Detailed thermal profiles of spent fuel assemblies inside storage container were calculated. With usage of multi-stage approach the thermal simulations of the influence of outer factors onto thermal state of containers was carried out. Results of thermal investigations were generalized and factors, which are influence on thermal state of containers, are detected. The method of spent nuclear fuel thermal state prediction and suggestion for improving the system of thermal monitoring were proposed.


MRS Advances ◽  
2018 ◽  
Vol 3 (19) ◽  
pp. 991-1003 ◽  
Author(s):  
Evaristo J. Bonano ◽  
Elena A. Kalinina ◽  
Peter N. Swift

ABSTRACTCurrent practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-century when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.


2021 ◽  
Vol 11 (14) ◽  
pp. 6499
Author(s):  
Matthias Frankl ◽  
Mathieu Hursin ◽  
Dimitri Rochman ◽  
Alexander Vasiliev ◽  
Hakim Ferroukhi

Presently, a criticality safety evaluation methodology for the final geological disposal of Swiss spent nuclear fuel is under development at the Paul Scherrer Institute in collaboration with the Swiss National Technical Competence Centre in the field of deep geological disposal of radioactive waste. This method in essence pursues a best estimate plus uncertainty approach and includes burnup credit. Burnup credit is applied by means of a computational scheme called BUCSS-R (Burnup Credit System for the Swiss Reactors–Repository case) which is complemented by the quantification of uncertainties from various sources. BUCSS-R consists in depletion, decay and criticality calculations with CASMO5, SERPENT2 and MCNP6, respectively, determining the keff eigenvalues of the disposal canister loaded with the Swiss spent nuclear fuel assemblies. However, the depletion calculation in the first and the criticality calculation in the third step, in particular, are subject to uncertainties in the nuclear data input. In previous studies, the effects of these nuclear data-related uncertainties on obtained keff values, stemming from each of the two steps, have been quantified independently. Both contributions to the overall uncertainty in the calculated keff values have, therefore, been considered as fully correlated leading to an overly conservative estimation of total uncertainties. This study presents a consistent approach eliminating the need to assume and take into account unrealistically strong correlations in the keff results. The nuclear data uncertainty quantification for both depletion and criticality calculation is now performed at once using one and the same set of perturbation factors for uncertainty propagation through the corresponding calculation steps of the evaluation method. The present results reveal the overestimation of nuclear data-related uncertainties by the previous approach, in particular for spent nuclear fuel with a high burn-up, and underline the importance of consistent nuclear data uncertainty quantification methods. However, only canister loadings with UO2 fuel assemblies are considered, not offering insights into potentially different trends in nuclear data-related uncertainties for mixed oxide fuel assemblies.


2021 ◽  
Author(s):  
Ryan M. Meyer ◽  
Jeremy Renshaw ◽  
Jamie Beard ◽  
Jon Tatman ◽  
Matt Keene ◽  
...  

Abstract This paper describes development and demonstration of remote crawling systems to support periodic examinations of interim dry storage system (DSS) canisters for spent nuclear fuel in the USA. Specifically, this work relates to robotic crawler developments for “canister” based DSS systems, which form the majority population of DSSs in the USA for interim storage of spent nuclear fuel. Consideration of potential degradation of the welded stainless-steel canister in these systems is required for continued usage in the period of extended operation (PEO) beyond their initial licensed or certified terms. Challenges with performing the periodic examinations are associated with physical access to the canister surface, which is constrained due to narrow annulus spaces between the canister and the overpack, tortuous entry pathways, and high temperatures and radiation doses that can be damaging to materials and electronics. Motivations for performing periodic examinations and developing robotic crawlers for performing those examinations remotely will be presented, and several activities to demonstrate robotic crawlers for different DSS systems are summarized.


2021 ◽  
Author(s):  
Ryan M. Meyer ◽  
Jeremy Renshaw ◽  
Kenn Hunter ◽  
Mike Orihuela ◽  
Jim Stadler ◽  
...  

Abstract This paper describes development and demonstration of nondestructive examination (NDE) technologies to support periodic examinations of interim dry storage system (DSS) canisters for spent nuclear fuel in the USA to verify continued safe operation and that the canister confinement is intact and performing its intended safety function. Specifically, this work relates to NDE technology development for “canister” based DSS systems, which form the majority population of DSSs in the USA for interim storage of spent nuclear fuel. Consideration of potential degradation of the welded stainless-steel canister in these systems is required for continued usage in the period of extended operation (PEO) beyond the initial license or certified term. Physical access to the canister surface is constrained due to narrow annulus spaces between the canister and the overpack, tortuous entry pathways, and high temperatures and radiation doses that can be damaging to materials and electronics related to inspections. Several activities to demonstrate NDE technologies for the inspections of different DSS systems are summarized.


Sign in / Sign up

Export Citation Format

Share Document