scholarly journals Definitions of fitness in age-structured populations: Comparison in the haploid case

2016 ◽  
Vol 391 ◽  
pp. 65-73 ◽  
Author(s):  
Sabin Lessard ◽  
Cintia Soares
2010 ◽  
Vol 78 (4) ◽  
pp. 239-249 ◽  
Author(s):  
Lee Worden ◽  
Louis W. Botsford ◽  
Alan Hastings ◽  
Matthew D. Holland

2001 ◽  
Vol 77 (2) ◽  
pp. 153-166 ◽  
Author(s):  
BRIAN CHARLESWORTH

Formulae for the effective population sizes of autosomal, X-linked, Y-linked and maternally transmitted loci in age-structured populations are developed. The approximations used here predict both asymptotic rates of increase in probabilities of identity, and equilibrium levels of neutral nucleotide site diversity under the infinite-sites model. The applications of the results to the interpretation of data on DNA sequence variation in Drosophila, plant, and human populations are discussed. It is concluded that sex differences in demographic parameters such as adult mortality rates generally have small effects on the relative effective population sizes of loci with different modes of inheritance, whereas differences between the sexes in variance in reproductive success can have major effects, either increasing or reducing the effective population size for X-linked loci relative to autosomal or Y-linked loci. These effects need to be accounted for when trying to understand data on patterns of sequence variation for genes with different transmission modes.


1995 ◽  
Vol 83 (3) ◽  
pp. 548
Author(s):  
Tom J. de Jong ◽  
B. Charlesworth

2010 ◽  
Vol 42 (2) ◽  
pp. 103 ◽  
Author(s):  
Zulfaidah Penata Gama ◽  
Pablo Morlacchi ◽  
Giuseppe Carlo Lozzia ◽  
Johann Baumgärtner ◽  
Anna Giorgi

The spatial distribution of Aphis spiraecola Patch was studied in two commercial yarrow fields located in the Swiss and Italian Alps and represented by Taylor’s (1961) power law. The respective parameters indicate a highly aggregated distribution and lead to a high optimum sample size of 400-500 plants in the design of a sampling program. Opportunities for reducing the sampling efforts are discussed. The infestation patterns were studied on the basis of Vansickle’s (1977) time varying distributed delay adequate for modelling the dynamics of age-structured populations. Published literature data were used to parametrize the functions representing the temperature-dependent duration and survival of the nymphal and adult stage. Likewise, literature data were available to obtain reliable estimates for the parameters of the fecundity function comprising the reproductive profile and the number of nymphs produced at different temperatures. The field data were used to parametrize the functions for wing formation and a compound mortality compromising the effects of plant senescence, stem cutting and natural enemies. The model satisfactorily represented the observed infestation patterns. However, there are opportunities for improving parameter estimation and validation. Moreover, the separation of the compound mortality into host plant and natural enemy effects would improve the mechanistic basis of the model and lead towards a tool that could be used to study bottom-up and top-down effects in the yarrow-aphid-natural enemy system.


Author(s):  
Louis W. Botsford ◽  
J. Wilson White ◽  
Alan Hastings

This chapter begins by revisiting the M’Kendrick/von Foerster model, but using size instead of age as the state variable. It then uses the lessons from that model to describe how individual growth and mortality rates determine both stand distributions (a population of mixed ages) and cohort distributions (all one age). In particular, incorporating variability in growth trajectories is shown to be important in obtaining realistic results—though it is not without pitfalls. Ultimately, the numerical calculations required to model size-structured populations for future projections are more challenging than those needed for age structure, so the chapter closes by discussing some mathematical tools that have been developed to accomplish this. These include the integral projection model, a recent approach that is very useful because, while more complex, it has a lot in common with the age-structured models examined in Chapters 3 and 4.


2011 ◽  
Vol 43 (04) ◽  
pp. 1027-1047 ◽  
Author(s):  
O. Hössjer

In this paper we study a general class of population genetic models where the total population is divided into a number of subpopulations or types. Migration between subpopulations is fast. Extending the results of Nordborg and Krone (2002) and Sagitov and Jagers (2005), we prove, as the total population sizeNtends to ∞, weak convergence of the joint ancestry of a given sample of haploid individuals in the Skorokhod topology towards Kingman's coalescent with a constant change of time scalec. Our framework includes age-structured models, geographically structured models, and combinations thereof. We also allow each individual to have offspring in several subpopulations, with general dependency structures between the number of offspring of various types. As a byproduct, explicit expressions for the coalescent effective population sizeN/care obtained.


Sign in / Sign up

Export Citation Format

Share Document