scholarly journals Sampling methods for recovery of human enteric viruses from environmental surfaces

2017 ◽  
Vol 248 ◽  
pp. 31-38 ◽  
Author(s):  
Nicole L. Turnage ◽  
Kristen E. Gibson
2011 ◽  
Vol 84 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Kristen E. Gibson ◽  
Yayi Guo ◽  
James T. Schissler ◽  
Melissa C. Opryszko ◽  
Kellogg J. Schwab

2007 ◽  
Vol 53 (6) ◽  
pp. 688-694 ◽  
Author(s):  
Annie Locas ◽  
Christine Barthe ◽  
Benoit Barbeau ◽  
Annie Carrière ◽  
Pierre Payment

A 1 year study was undertaken on groundwater that was a source of drinking water in the province of Quebec, Canada. Twelve municipal wells (raw water) were sampled monthly during a 1 year period, for a total of 160 samples. Using historic data, the 12 sites were categorized into 3 groups: group A (no known contamination), group B (sporadically contaminated by total coliforms), and group C (historic and continuous contamination by total coliforms and (or) fecal coliforms). Bacterial indicators (total coliform, Escherichia coli , enteroccoci), viral indicators (somatic and male-specific coliphages), total culturable human enteric viruses, and noroviruses were analyzed at every sampling site. Total coliforms were the best indicator of microbial degradation, and coliform bacteria were always present at the same time as human enteric viruses. Two samples contained human enteric viruses but no fecal pollution indicators (E. coli, enterococci, or coliphages), suggesting the limited value of these microorganisms in predicting the presence of human enteric viruses in groundwater. Our results underline the value of historic data in assessing the vulnerability of a well on the basis of raw water quality and in detecting degradation of the source. This project allowed us to characterize the microbiologic and virologic quality of groundwater used as municipal drinking water sources in Quebec.


2018 ◽  
Vol 11 (1) ◽  
pp. 52-64 ◽  
Author(s):  
Laetitia Kaas ◽  
Leslie Ogorzaly ◽  
Gaël Lecellier ◽  
Véronique Berteaux-Lecellier ◽  
Henry-Michel Cauchie ◽  
...  

2010 ◽  
Vol 50 (5) ◽  
pp. 462-467 ◽  
Author(s):  
L. Serracca ◽  
M. Verani ◽  
R. Battistini ◽  
I. Rossini ◽  
A. Carducci ◽  
...  

2000 ◽  
Vol 66 (8) ◽  
pp. 3241-3248 ◽  
Author(s):  
F. Le Guyader ◽  
L. Haugarreau ◽  
L. Miossec ◽  
E. Dubois ◽  
M. Pommepuy

ABSTRACT The main pathogenic enteric viruses able to persist in the environment, such as hepatitis A virus (HAV), Norwalk-like virus (NLV), enterovirus (EV), rotavirus (RV), and astrovirus (AV), were detected by reverse transcription-PCR and hybridization in shellfish during a 3-year study. Oyster samples (n = 108), occasionally containing bacteria, were less frequently contaminated, showing positivity for AV (17%), NLV (23%), EV (19%), and RV (27%), whereas mussel samples, collected in areas routinely impacted by human sewage, were more highly contaminated: AV (50%), HAV (13%), NLV (35%), EV (45%), and RV (52%). Sequences obtained from HAV and NLV amplicons showed a great variety of strains, especially for NLV (strains close to Mexico, Snow Mountain Agent, or Norwalk virus). Viral contamination was mainly observed during winter months, although there were some seasonal differences among the viruses. This first study of virus detection over a fairly long period of time suggests that routine analysis of shellfish by a molecular technique is feasible.


2018 ◽  
Vol 25 (33) ◽  
pp. 33391-33401 ◽  
Author(s):  
Kata Farkas ◽  
Miles Marshall ◽  
David Cooper ◽  
James E. McDonald ◽  
Shelagh K. Malham ◽  
...  

1999 ◽  
Vol 65 (9) ◽  
pp. 4118-4125 ◽  
Author(s):  
Dale W. Griffin ◽  
Charles J. Gibson ◽  
Erin K. Lipp ◽  
Kelley Riley ◽  
John H. Paul ◽  
...  

ABSTRACT In order to assess the microbial water quality in canal waters throughout the Florida Keys, a survey was conducted to determine the concentration of microbial fecal indicators and the presence of human pathogenic microorganisms. A total of 19 sites, including 17 canal sites and 2 nearshore water sites, were assayed for total coliforms, fecal coliforms, Escherichia coli, Clostridium perfringens, enterococci, coliphages, F-specific (F+) RNA coliphages, Giardia lamblia, Cryptosporidium parvum, and human enteric viruses (polioviruses, coxsackie A and B viruses, echoviruses, hepatitis A viruses, Norwalk viruses, and small round-structured viruses). Numbers of coliforms ranged from <1 to 1,410, E. coli organisms from <1 to 130,Clostridium spp. from <1 to 520, and enterococci from <1 to 800 CFU/100 ml of sample. Two sites were positive for coliphages, but no F+ phages were identified. The sites were ranked according to microbial water quality and compared to various water quality standards and guidelines. Seventy-nine percent of the sites were positive for the presence of enteroviruses by reverse transcriptase PCR (polioviruses, coxsackie A and B viruses, and echoviruses). Sixty-three percent of the sites were positive for the presence of hepatitis A viruses. Ten percent of the sites were positive for the presence of Norwalk viruses. Ninety-five percent of the sites were positive for at least one of the virus groups. These results indicate that the canals and nearshore waters throughout the Florida Keys are being impacted by human fecal material carrying human enteric viruses through current wastewater treatment strategies such as septic tanks. Exposure to canal waters through recreation and work may be contributing to human health risks.


2017 ◽  
Vol 124 (4) ◽  
pp. 943-957 ◽  
Author(s):  
J.L. Romalde ◽  
E. Rivadulla ◽  
M.F. Varela ◽  
J.L. Barja

1987 ◽  
Vol 33 (6) ◽  
pp. 568-570 ◽  
Author(s):  
Pierre Payment ◽  
Michel Trudel

This study demonstrates that the most sensitive method for the detection and quantitation of cultivable human enteric viruses in water samples after repassage in the MA-104 cell line is the detection of infected cells by the human immune serum globulin–immunoperoxidase (HISG–IP) method recently described by the authors. This immunoperoxidase method is up to 50 times more sensitive than a liquid overlay assay by cytopathic effect in BGM cells. The viral content of waste waters was evaluated with this new methodology. By this method the average viral content of raw sewage (RS) was 900 mpniu/L (most probable number of infectious units per litre), 1056 mpniu/L in primary effluent (PE), and 106 mpniu/L in secondary effluent (SE). With a cytopathic effect assay on BGM cells, values of 85 (RS), 56 (PE), and 2 (SE) mpniu/L were observed, a striking underestimation of the viral content of secondary effluents.


Sign in / Sign up

Export Citation Format

Share Document