Water geochemistry and soil gas survey at Ungaran geothermal field, central Java, Indonesia

2012 ◽  
Vol 229-230 ◽  
pp. 23-33 ◽  
Author(s):  
Nguyen Kim Phuong ◽  
Agung Harijoko ◽  
Ryuichi Itoi ◽  
Yamashiro Unoki
1992 ◽  
Vol 21 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Nic Korte ◽  
Sandra Wagner ◽  
Jon Nyquist

2016 ◽  
Vol 59 ◽  
Author(s):  
Giancarlo Ciotoli ◽  
Alessandra Sciarra ◽  
Livio Ruggiero ◽  
Aldo Annunziatellis ◽  
Sabina Bigi

<p>Following the earthquake (M<sub>L</sub>=6.0) of 24 August 2016 that affected large part of the central Apennine between the municipalities of Norcia (PG) and Amatrice (RI) (central Italy), two soil gas profiles (i.e., <sup>222</sup>Rn, <sup>220</sup>Rn, CO<sub>2</sub> and CO<sub>2</sub> flux) were carried out across buried and exposed coseismic fault rupture of the Mt. Vettore fault during the seismic sequence. The objective of the survey was to explore the mechanisms of migration and the spatial behaviour of different gas species near still-degassing active fault. Results provide higher gas and CO<sub>2</sub> flux values (about twice for <sup>222</sup>Rn and CO<sub>2</sub> flux) in correspondence of the buried sector of the fault than those measured across the exposed coseismic rupture. Anomalous peaks due to advective migration are clearly visible on both side of the buried fault (profile 1), whereas the lower soil gas concentrations measured across the exposed coseimic rupture (profile 2) are mainly caused by shallow and still acting diffusive degassing associated to faulting during the seismic sequence. These results confirm the usefulness of the soil gas survey to spatially recognise the shallow geometry of hidden faults, and to discriminate the geochemical migration mechanisms occurring at buried and exposed faults related to seismic activity.</p>


Proceedings ◽  
2020 ◽  
Vol 67 (1) ◽  
pp. 7
Author(s):  
Ana Maria Carmen Ilie ◽  
Carmela Vaccaro

Cities are major contributors to greenhouse gas emissions (GHG) due to the high density of urbanization, numerous industrial centers, and intensive agricultural activities. This study focused on soil methane and radon gas measurements in the subsurface, as well as in the atmosphere. Measurements were conducted using new gas detection instrumentation and as low-cost devices for methane gas concentrations. Maximum soil radon gas concentration was observed to be approximately 1770 ± 582 Bq/m3 at a depth of 1 m below the ground surface. The soil comprised of 64.31% sand, 20.75% silt, and 14.94% clay, and 0.526 ppm of uranium. The maximum concentration of methane was about 0.06%, at a depth of 1 m into the soil, characterized by 83% sand, 8.96% silt, and 7.89% clay. Moreover, this study focused on a better understanding of the advantages and disadvantages of new soil gas detection technology. The results and findings of environmental data obtained from the soil gas survey were shared with the community, whose involvement was critical in the data acquisition process.


2018 ◽  
Vol 66 (5) ◽  
pp. 1213-1221 ◽  
Author(s):  
Arvind Kumar ◽  
Vivek Walia ◽  
Yi-Chun Sung ◽  
Shih-Jung Lin ◽  
Ching-Chou Fu ◽  
...  

2014 ◽  
Vol 2 (2) ◽  
pp. 1729-1757 ◽  
Author(s):  
X. Han ◽  
Y. Li ◽  
J. Du ◽  
X. Zhou ◽  
C. Xie ◽  
...  

Abstract. The present work is proposed to investigate the spatiotemporal variations of soil gas Rn and CO2 across the active faults in the capital area of China, for the understanding of fault activities and the assessment of seismic hazard. A total of 342 soil gas sampling sites were measured twice in 2011 and 2012 along seven profiles across four faults. The results of soil gas surveys show that in each profile, due to the variation of gas emission rate, the concentrations of Rn and CO2 changed in the vicinity of faults. Spatial distributions of Rn and CO2 in the study areas were different from each other, which was attributed to soil types affecting the existence of Rn and CO2. Compared with 2011 soil gas survey, the increases of Rn and CO2 concentrations in 2012 were related to the enhancement of seismic activities in the capital area of China. Our results indicate that special attention for seismic monitoring should be paid to Xinbaoan-Shacheng Fault and the north east segment of Tangshan Fault in the future.


Sign in / Sign up

Export Citation Format

Share Document