scholarly journals Atmospheric and Soil Methane Concentrations Integrating a New Gas Detection Technology

Proceedings ◽  
2020 ◽  
Vol 67 (1) ◽  
pp. 7
Author(s):  
Ana Maria Carmen Ilie ◽  
Carmela Vaccaro

Cities are major contributors to greenhouse gas emissions (GHG) due to the high density of urbanization, numerous industrial centers, and intensive agricultural activities. This study focused on soil methane and radon gas measurements in the subsurface, as well as in the atmosphere. Measurements were conducted using new gas detection instrumentation and as low-cost devices for methane gas concentrations. Maximum soil radon gas concentration was observed to be approximately 1770 ± 582 Bq/m3 at a depth of 1 m below the ground surface. The soil comprised of 64.31% sand, 20.75% silt, and 14.94% clay, and 0.526 ppm of uranium. The maximum concentration of methane was about 0.06%, at a depth of 1 m into the soil, characterized by 83% sand, 8.96% silt, and 7.89% clay. Moreover, this study focused on a better understanding of the advantages and disadvantages of new soil gas detection technology. The results and findings of environmental data obtained from the soil gas survey were shared with the community, whose involvement was critical in the data acquisition process.

2016 ◽  
Vol 31 (3) ◽  
pp. 291-298 ◽  
Author(s):  
Aleem Tareen ◽  
Muhammad Rafique ◽  
Kimberlee Kearfot ◽  
Muhammad Basharat ◽  
Bilal Shafique

Soil-based radon investigations are of value in correlating radon production and its transportation into buildings through the processes of convection and diffusion. Such studies can help in identifying land areas that pose special concerns. We present preliminary results of soil radon gas measurements at 60 different locations in an attempt to map out the geohazard zone of the city of Muzaffarabad. The seismic geohazard microzonation for the area includes five microzones based on different hazard parameters: a very high hazard zone, a high hazard zone, a moderate hazard zone, a low hazard zone, and a safe zone. Measurements were taken with an active radon monitoring system at the depths of 30, 40, 50, and 60 cm below the ground surface. The results obtained were explained by the lithology of the area. Average soil radon gas concentrations were correlated with the depth from the ground surface and indoor radon values for the study area. No significant correlation was found between soil radon gas and meteorological parameters, however soil radon gas increases as the depth from the surface of the ground grows. The results showed a linear relation between soil radon concentrations with depth from ground surface (R2 = 0.9577). The minimum soil radon concentration (68.5 Bq/m3) was found at a depth of 30 cm in the very high hazard zone, the maximum value (53.300 Bq/m3) at a depth of 60 cm in the seismically safe zone. Measured soil gas radon concentrations at depths of 30, 40, 50, and 60 cm were mapped for high, moderate, and low radon concentrations. Elevated soil radon gas concentrations were found in the safe zone, otherwise considered to be suitable for any type of construction.


Author(s):  
Zhenhua Li ◽  
Weihui Jiang ◽  
Li Qiu ◽  
Zhenxing Li ◽  
Yanchun Xu

Background: Winding deformation is one of the most common faults in power transformers, which seriously threatens the safe operation of transformers. In order to discover the hidden trouble of transformer in time, it is of great significance to actively carry out the research of transformer winding deformation detection technology. Methods: In this paper, several methods of winding deformation detection with on-line detection prospects are summarized. The principles and characteristics of each method are analyzed, and the advantages and disadvantages of each method as well as the future research directions are expounded. Finally, aiming at the existing problems, the development direction of detection method for winding deformation in the future is prospected. Results: The on-line frequency response analysis method is still immature, and the vibration detection method is still in the theoretical research stage. Conclusion: The ΔV − I1 locus method provides a new direction for on-line detection of transformer winding deformation faults, which has certain application prospects and practical engineering value.


1992 ◽  
Vol 21 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Nic Korte ◽  
Sandra Wagner ◽  
Jon Nyquist

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 887
Author(s):  
Chunhua Feng ◽  
Buwen Cui ◽  
Haidong Ge ◽  
Yihong Huang ◽  
Wenyan Zhang ◽  
...  

Recycled aggregate is aggregate prepared from construction waste. With the development of a global economy and people’s attention to sustainable development, recycled aggregate has shown advantages in replacing natural aggregate in the production of concrete due to its environmental friendliness, low energy consumption, and low cost. Recycled aggregate exhibits high water absorption and a multi-interface transition zone, which limits its application scope. Researchers have used various methods to improve the properties of recycled aggregate, such as microbially induced calcium carbonate precipitation (MICP) technology. In this paper, the results of recent studies on the reinforcement of recycled aggregate by MICP technology are synthesized, and the factors affecting the strengthening effect of recycled aggregate are reviewed. Moreover, the strengthening mechanism, advantages and disadvantages of MICP technology are summarized. After the modified treatment, the aggregate performance is significantly improved. Regardless of whether the aggregate was used in mortar or concrete, the mechanical properties of the specimens were clearly improved. However, there are some issues regarding the application of MICP technology, such as the use of an expensive culture medium, a long modification cycle, and untargeted mineralization deposition. These difficulties need to be overcome in the future for the industrialization of regenerated aggregate materials via MICP technology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph R. Roscioli ◽  
Laura K. Meredith ◽  
Joanne H. Shorter ◽  
Juliana Gil-Loaiza ◽  
Till H. M. Volkmann

AbstractSoil microbes vigorously produce and consume gases that reflect active soil biogeochemical processes. Soil gas measurements are therefore a powerful tool to monitor microbial activity. Yet, the majority of soil gases lack non-disruptive subsurface measurement methods at spatiotemporal scales relevant to microbial processes and soil structure. To address this need, we developed a soil gas sampling system that uses novel diffusive soil probes and sample transfer approaches for high-resolution sampling from discrete subsurface regions. Probe sampling requires transferring soil gas samples to above-ground gas analyzers where concentrations and isotopologues are measured. Obtaining representative soil gas samples has historically required balancing disruption to soil gas composition with measurement frequency and analyzer volume demand. These considerations have limited attempts to quantify trace gas spatial concentration gradients and heterogeneity at scales relevant to the soil microbiome. Here, we describe our new flexible diffusive probe sampling system integrated with a modified, reduced volume trace gas analyzer and demonstrate its application for subsurface monitoring of biogeochemical cycling of nitrous oxide (N2O) and its site-specific isotopologues, methane, carbon dioxide, and nitric oxide in controlled soil columns. The sampling system observed reproducible responses of soil gas concentrations to manipulations of soil nutrients and redox state, providing a new window into the microbial response to these key environmental forcings. Using site-specific N2O isotopologues as indicators of microbial processes, we constrain the dynamics of in situ microbial activity. Unlocking trace gas messengers of microbial activity will complement -omics approaches, challenge subsurface models, and improve understanding of soil heterogeneity to disentangle interactive processes in the subsurface biome.


2016 ◽  
Vol 723 ◽  
pp. 572-578
Author(s):  
Li Fu ◽  
Qi Chi Le ◽  
Xi Bo Wang ◽  
Xuan Liu ◽  
Wei Tao Jia

In recent years, the development and utilization of renewable generation have attracted more and more attention, and the grid puts forward higher requirements to the energy storage technology, especially for security, stability and reliability. The liquid metal battery (LMB) consists of two liquid metal electrodes and a molten salt electrolyte, which will be segregated into three liquid layers naturally. Being low-cost and long-life, it is regarded as the best choice for grid-level large-scale energy storage. This paper describes the main structure and working principle of the LMB, analyzes the advantages and disadvantages of the LMB when compared with the traditional batteries, and explores the feasibility and economy when it is used as a kind of large-scale energy storage applied in the power grid. The paper also makes a comprehensive comparison on the performance of several LMBs, and points out the LMB’s research and development in the future.


2011 ◽  
Vol 186 ◽  
pp. 11-15
Author(s):  
Li Cao ◽  
Wen Chen ◽  
Jun Xiao

Video processing technology is regarded as a low-cost detection technology in complex environment. Because the placement layer is thin and the surface is complex that causes high detection error and high cost in laser measurement. Two problems must be solved before using it in large-scale composite structures automatic placement. One is to obtain the high-quality and stable image, and the other is to improve efficiency of image processing. In this paper, a method obtaining the high quality placement gap images was studied. It made use of the optical characteristics of composite material’s surface texture. And some parameters were determined by experiments. To reduce the calculation cost of image processing, a placement gap measurement method based on line scanning was also proposed here. The method was effective in our detection experiments on an actual workpiece.


2021 ◽  
Author(s):  
Jan Hrach

<p>We have undertaken a journey to develop a small X-band radar based on widely available commercial off-the-shelf (COTS) components. We have evaluated various radar transmitters, antenna and radome designs and sizes and we are currently operating the second-largest radar network in Europe, spanning 5 countries and consisting of 30 radars.</p><p>The final solution can be deployed by a small team in two days and operated without supervision with negligible maintenance and recurring costs. With approximately 120 kilometers of effective range and high refresh rate, it might be a good fit as an early warning radar, for areas with no current radar coverage or to fill gaps in larger networks; however, due to some limitations of the X band, namely higher attenuation in spatially distributed rain, it may not be a replacement of long-range observation radars.</p><p>In this work, we present an overview of our undertakings, technical solutions we have chosen and problems we have encountered. First, we cover transmitter technology selection, and discuss advantages and disadvantages of currently available magnetron and solid-state transmitters. Then we show the evolution of our antenna design, from 1-dimensional slotted waveguide to parabolic antennas with tapered beam. </p><p>With large parabolic antennas, another problem arises: the mechanics of the radar cannot cope with the additional weight and angular momentum, thus we had to develop various mechanical supports and a custom rotator. This rotator can also tilt the antenna, effectively adding volumetric scanning; the tilting is also needed to cope with non-ideal radar locations, where the horizon is partially obscured, which are unfortunately common for a radar network with limited budget. Finally, we discuss design and material selection of our custom radomes, and present an overall experience with everyday running and maintaining the network.</p>


Sign in / Sign up

Export Citation Format

Share Document