geochemical behaviour
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 18)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 38 (2) ◽  
pp. 49-62
Author(s):  
Ashim Jana ◽  
Deepak Kumar Sinha

Bagiyabahal and Birtola areas are located in the south-western extension of the Noamundi-Koira Iron Ore Group (IOG) basin. Rock types exposed in the area comprises of siliciclastics and volcanics which occurs unconformably over the basement tonalite-trondhjemite granite-gneiss (Bonai Granite Phase-I). The cover rocks show sheared contact with the porphyritic Bonai Granite Phase-II. The IOG basin margin is suggested to be a part of a ‘volcanic passive margin’ as indicated by the geochemical behaviour of the siliciclastics as well as massive emplacements of mafic intrusives (doleritic sill, dyke and gabbro) and extrusives (basaltic lava flow) along faulted continental blocks. The siliciclastics comprise of U and Au bearing quartz-pebble conglomerate (QPC) and quartzite succession. It was deposited along the western margin of the Bonai granite (phase I) in anoxic conditions as indicated by their low Th/U ratios and presence of detrital uraninite grains. Repeated cycles of sedimentation and volcanism led to the formation of alternate layers of siliciclastics and basic bodies in the area. Major, trace and rare earth elements (REE) geochemical data suggests a semi-humid to humid palaeo-climatic environment of during the deposition in the passive continental margin setting characterized by fault-controlled sedimentation over a rift related faulted continental crust and shelf. Geochemical data suggests chemically weathered provenance dominated by clay minerals. Higher content of U, Th, Au, Cr, REE, platinum group of elements (PGE) and other geochemical ratios suggest a mixed provenance for the deposition of the siliciclastics comprising a predominantly acidic/granitic source possibly from the Bonai Granitic Complex (BGC) along with granite derived reworked quartzose sediments, minor basic and ultrabasic sources of Older Metamorphic Group (OMG). This paper attempts to characterize the geochemical behaviour, tectonic setting and provenance of the siliciclastics of Birtola and Bagiyabahal areas by analyzing drill core and surface samples.


Nature ◽  
2021 ◽  
Vol 600 (7890) ◽  
pp. 670-674
Author(s):  
R. L. Tyne ◽  
P. H. Barry ◽  
M. Lawson ◽  
D. J. Byrne ◽  
O. Warr ◽  
...  

AbstractCarbon capture and storage (CCS) is a key technology to mitigate the environmental impact of carbon dioxide (CO2) emissions. An understanding of the potential trapping and storage mechanisms is required to provide confidence in safe and secure CO2 geological sequestration1,2. Depleted hydrocarbon reservoirs have substantial CO2 storage potential1,3, and numerous hydrocarbon reservoirs have undergone CO2 injection as a means of enhanced oil recovery (CO2-EOR), providing an opportunity to evaluate the (bio)geochemical behaviour of injected carbon. Here we present noble gas, stable isotope, clumped isotope and gene-sequencing analyses from a CO2-EOR project in the Olla Field (Louisiana, USA). We show that microbial methanogenesis converted as much as 13–19% of the injected CO2 to methane (CH4) and up to an additional 74% of CO2 was dissolved in the groundwater. We calculate an in situ microbial methanogenesis rate from within a natural system of 73–109 millimoles of CH4 per cubic metre (standard temperature and pressure) per year for the Olla Field. Similar geochemical trends in both injected and natural CO2 fields suggest that microbial methanogenesis may be an important subsurface sink of CO2 globally. For CO2 sequestration sites within the environmental window for microbial methanogenesis, conversion to CH4 should be considered in site selection.


Modelling ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 675-685
Author(s):  
Raúl Periáñez

A rapid-response Lagrangian model for the use in simulation of the transport of a chemical pollutant in the Arabian/Persian Gulf is described. The model is well suited to the provision of a fast response after an emergency due to an accident or a deliberate spill. It is easy to set up for any situation since only requires the modification of a few input files specifying the pollutant properties and release characteristics. Running times are short, even on a desktop PC, which makes it appropriate for a rapid assessment of a hypothetical accident occurring in the region. Baroclinic circulation was obtained from an HYCOM ocean model, and tides were calculated using a barotropic model. The interactions of pollutants with sediments (uptake/release processes) were described using a dynamic approach based on kinetic transfer coefficients and a stochastic numerical method. Some examples of model applications are shown, showing the influence of the geochemical behaviour of the pollutant in its distribution patterns.


2021 ◽  
Vol 1 ◽  
pp. 159-160
Author(s):  
Andrej Skerencak-Frech ◽  
Petra Panak ◽  
Kathy Dardenne ◽  
Jörg Rothe ◽  
Xavier Gaona ◽  
...  

Abstract. The Safety Case for a radioactive waste repository in deep geological formations requires detailed chemical and thermodynamic information on the stored radionuclides in their relevant oxidation states. Although a comprehensive summary of critically evaluated thermodynamic data is available via the blue book series of the NEA-TDB (“Nuclear Energy Agency – Thermochemical Database”), the majority of this data is limited to ambient conditions (Grenthe et al., 2020). In the case of the disposal of high-active, heat-producing waste, however, the near-field of the repository will experience increased temperatures at early operative phases for several hundred or a few thousand years. Radionuclides may come into contact with aquatic solutions or brines at elevated temperatures in the case of early canister failure. Besides other factors of the overall disposal concept (e.g. the geometry of the repository, type and amount of stored radionuclide inventories), host rock characteristics themselves limit the extent of the allowable temperature increase. For example, in clay formations the maximum temperature should stay at around or below ∼100∘C in order to avoid an irreversible change in the host rock retention capacity, whereas rock salt allows much higher temperatures of up to 200 ∘C. Increased temperatures will have a distinct impact on the geochemical behaviour of radionuclides, potentially affecting their mobility and retention in the near field. Besides reactions at the solid–liquid interface (e.g. dissolution/precipitation reactions of the waste matrix, sorption reactions of the radionuclides to surfaces), complexation reactions with inorganic and organic ligands present in the aqueous phase potentially affect migration behaviour of the radionuclides. A quantitative thermodynamic description of these processes requires standard stability constants (log⁡βn0(T)), as well as standard reaction enthalpies and entropies (ΔrHm,n0, ΔrSm,n0). The precise experimental determination of these data for all relevant radionuclide/ligand reactions requires a vast amount of time and effort. In this regard, reliable extrapolation methods in particular for standard stability constants valid for 25 ∘C to higher temperatures are considered to support a comprehensive description. Recently, the German Federal Ministry of Education and Research (BMBF)-funded collaborative research project “Therm AC” focused on the experimental determination of new thermodynamic data at higher temperatures, as well as the comparison with the analogous results yielded by extrapolation methods. The Thermochemical Database Project of the OECD-NEA (NEA-TDB) is currently in the process of preparing a comprehensive state-of-the-art report on the high temperature thermodynamics of radionuclides, further emphasizing the particular relevance of this interesting topic. Within this contribution, a critical overview on the recent advances in the field of high temperature studies of radionuclides in aqueous solutions will be given. Besides summarizing information on key technical aspects relevant for high temperature studies, the effect of increased temperatures on the complexation of trivalent actinides with chloride will be discussed in more detail in order to illustrate newly derived in-depth understanding of the impact of increased temperatures on the (geo)chemical behaviour of trivalent actinides on the molecular scale (Skerencak-Frech et al., 2014).


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 987
Author(s):  
Gabrielle Dublet-Adli ◽  
Thomas Pabst ◽  
Gudny Okkenhaug ◽  
Christian Sætre ◽  
Anna M. Vårheim ◽  
...  

The reclamation of acid-generating mine tailings typically involves building cover systems to limit interactions with water or oxygen. The choice of cover materials is critical to ensure long-term performance, and partly determines the environmental footprint of the reclamation strategy. The objective of this research was to evaluate if tailings pre-oxidized on-site could be used in cover systems. Column experiments were performed to assess the effectiveness of a cover with capillary barrier effects (CCBE), where the moisture retention layer (MRL) was made of pre-oxidized tailings with little to no remaining sulfides (LS tailings). The columns were submitted to regular wetting and drying cycles, and their hydrological and geochemical behaviour was monitored for 510 days. The LS tailings showed satisfying hydrological properties as an MRL and remained saturated throughout the test. The concentrations of Cu in the drainage decreased by more than two orders of magnitude compared to non-covered tailings. In addition, the pH increased by nearly one unit compared to the control column, and Fe and S concentrations decreased by around 50%. Despite these improvements, the leachate water remained acidic and contaminated, indicating that acid drainage continued to be generated despite a hydrologically efficient CCBE.


2021 ◽  
Vol 764 ◽  
pp. 143796
Author(s):  
Carlos Ruiz Cánovas ◽  
María Dolores Basallote ◽  
Francisco Macías ◽  
Manuel Olías ◽  
Rafael Pérez-López ◽  
...  

2021 ◽  
Author(s):  
Elvira Bura-Nakić ◽  
Lucija Knežević ◽  
Jelena Mandić ◽  
Ana-Marija Cindrić ◽  
Dario Omanović

<p>In oxic waters, Re<sup>VII </sup>is the stable oxidation state which undergo hydrolysis to the relatively unreactive perrhenate ion, Re<sup>VII</sup>O<sub>4</sub><sup>- [1]</sup>. The oceanic dissolved Re exhibits quite conservative behaviour with the concentration of about 40 pM <sup>[2]</sup>. Despite the frequent utilization of Re for the atmosphere and the ocean past redox state reconstructions, the geochemical behaviour of Re in the modern surface environments such as rivers, estuaries as well as in seawater is not well studied. Understudy is partially arising from the fact that Re has low seawater and riverine concentration of 4 pM and 16.5 pM, respectively<sup></sup><sup>[1, 3]</sup>. In the Amazon and the Hudson estuaries, in crease of Re concentration at low and middle salinity regions is observed<sup> [4]</sup>. On the other hand, Re exhibits complete conservative behaviour in Indian river estuaries, i.e. Narmada, Tapi and the Mandovi estuaries in the Arabian Sea and the Hooghly estuary in the Bay of Bengal <sup>[5]</sup>. Deviation from conservative behaviour in Re can be explained as the interplay of variety of factors including the nature and composition of the particles, Eh-pH conditions, biological productivity and fate of the organic matter. <sup>[5]</sup>.</p><p>Here we present the Re concentration profiles in the freshwater part of the karstic Krka river (Croatia) and its 23 km long estuarine segment, covering a full salinity range (0.1 to 38.6). Analysis of Re was performed by its preconcentration and separation using an anion exchange resin (Dowex 1X8) followed with the ICP-MS quantification using isotope dilution (ID) method. The Krka River spring is characterised by the low Re concentration (~6 pM). A noticeable anthropogenic influence at the point of the wastewater discharge of the Knin town was observed (27 pM). This input probably caused a progressive downstream increase of Re concentration to 12 pM at the freshwater end-member in the winter period (with a high Krka River discharge) and 17 pM in the summer period (low Krka River discharge). In the estuarine segment, a near-conservative behaviour of Re was found, with the "oceanic" concentration of 38 pM in the seawater end-member.</p><p> </p><p>References:</p><p>[1] Hasse AA et al., (2019) Coordination chemistry reviews 394: 135-161.</p><p>[2] Anbar AD et al., (1992) Geochimica et Cosmochimica Acta<strong> </strong>56:4099-4103.</p><p>[3] Miller CA et al., (2011) Geochimica et Cosmochimica Acta 75:7146-7179.</p><p>[4] Colodner D et al., (1993) Earth and Planetary Science Letters 117:205-221.</p><p>[5] Rahaman W and Singh SK (2010) Marine Chemistry 118: 1-10.</p>


2021 ◽  
Author(s):  
Andres Cardenas Niño ◽  
Rosa Marques ◽  
Maria Dias ◽  
Catarina Diamantino ◽  
Edgar Carvalho

Sign in / Sign up

Export Citation Format

Share Document