scholarly journals 3-D Seismic Tomographic study of Sinabung Volcano, Northern Sumatra, Indonesia, during the inter-eruptive period October 2010–July 2013

2019 ◽  
Vol 382 ◽  
pp. 197-209 ◽  
Author(s):  
Novianti Indrastuti ◽  
Andri Dian Nugraha ◽  
Wendy Anne McCausland ◽  
Mohammad Hendrasto ◽  
Hendra Gunawan ◽  
...  
Keyword(s):  
2016 ◽  
Vol 78 (11) ◽  
Author(s):  
Benjamin Bernard ◽  
Jean Battaglia ◽  
Antonio Proaño ◽  
Silvana Hidalgo ◽  
Francisco Vásconez ◽  
...  

2020 ◽  
Author(s):  
Kazutaka Mannen ◽  
Yuki Abe ◽  
Yasushi Daita ◽  
Ryosuke Doke ◽  
Masatake Harada ◽  
...  

Abstract Since the beginning of the 21st century, volcanic unrest has occurred every 2–5 years at Hakone volcano. After the 2015 eruption, unrest activity changed significantly in terms of seismicity and geochemistry. In this paper, characteristics of the post-eruptive volcanic unrest that occurred in 2017 and 2019 are described, and changes in the hydrothermal system of the volcano caused by the eruption are discussed. Like the pre- and co-eruptive unrest, each post-eruptive unrest episode was detected by deep inflation below the volcano (~ 10 km) and deep low frequency events, which can be interpreted as reflecting supply of magma or magmatic fluid from depth. The seismic activity during the post-eruptive unrest episodes also increased; however, seismic activity beneath the eruption center during the unrest episodes was significantly lower, especially in the shallow region (~2 km), while sporadic seismic swarms were observed beneath the caldera rim, ~3 km away from the center. The 2015 eruption established routes for steam from the hydrothermal system (≥ 150 m deep) to the surface through the cap-rock, allowing emission of super-heated steam (~ 160 ºC), which was absent before the eruption. This steam showed an increase in magmatic/hydrothermal gas ratios (SO2/H2S and HCl/H2S) in the 2019 unrest, which may be interpreted as magmatic intrusion at shallow depth; however, no indicative seismic and geodetic signals were observed. Net SO2 emission during the post-eruptive unrest episodes, which remained within the usual range of the post-eruptive period, is also inconsistent with shallow intrusion. We consider that the post-eruptive unrest episodes were also triggered by newly derived magma or magmatic fluid from depth; however, the breached cap-rock was unable to allow subsequent pressurization of the hydrothermal system beneath the volcano center and suppressed seismic activity significantly. The heat released from the newly derived magma or fluid dried the vapor-dominated portion of the hydrothermal system and inhibited scrubbing of SO2 and HCl to allow a higher magmatic/hydrothermal gas ratio. The 2015 eruption could have also breached the sealing zone near the brittle–plastic transition and the subsequent self-sealing process seems not to have completed based on the observations during the post-eruptive unrest episodes.


2004 ◽  
Vol 41 (12) ◽  
pp. 1401-1410 ◽  
Author(s):  
Franklin F Foit Jr. ◽  
Daniel G Gavin ◽  
Feng Sheng Hu

Several mid-late Holocene Glacier Peak tephras along with Mazama and Mount St. Helens Wn and P tephras were found in cores from Cooley and Rockslide lakes in southeastern British Columbia, ∼300 km northeast of Glacier Peak. The sediments in Cooley Lake host the late Holocene Glacier Peak A tephra (2010 calibrated (cal) years BP), four separate Glacier Peak Dusty Creek (GPDC) tephras (5780–5830 cal years BP), and a Glacier Peak set D tephra (6060 cal years BP). This is the first report of Glacier Peak A and D tephras in British Columbia. The A tephra has been correlated on the basis of glass composition and age to a late Holocene Glacier Peak tephra in the sediments of Big Twin Lake, 75 km northeast of Glacier Peak. The glasses in the four GPDC tephra layers from Cooley Lake are compositionally indistinguishable from those in Mount Barr Cirque and Frozen lakes in southwestern British Columbia. The layers likely represent four eruptions taking place over 50 years. Although set D tephra has not been correlated to a known proximal or distal deposit, its glass bears the Glacier Peak glass compositional signature and its interpolated age corresponds to the initiation of the set D eruptive period. The presence of GPDC tephra in lake sediments across southern British Columbia suggests a broad plume trajectory to the north and northeast, whereas the apparent absence of the A and D tephras in all but Cooley Lake suggest plumes with a northeasterly direction.


2007 ◽  
Vol 45 ◽  
pp. 73-82 ◽  
Author(s):  
Nuria Andrés ◽  
Josè J. Zamorano ◽  
Josè J. Sanjosé ◽  
Alan Atkinson ◽  
David Palacios

AbstractPopocatépetl (19°02’ N, 98°62’W; 5424 m) is one of the largest active stratovolcanoes in the Transmexican Volcanic Belt. A glacier located on the north side has undergone severe ablation since the volcano reinitiated eruptive activity in December 1994. In our study, we calculate the extent of the glacier recession and the loss in glacial mass balance during the period of greatest laharic activity (1994–2002), using photogrammetric treatment of 20 pairs of aerial photographs. The results indicate that from November 1997 to December 2002, the glacier released approximately 3 967 000 m3 of water. A period of intense glacier melting occurred from 4 November 2000 to 15 March 2001 during which time 717 000 m3 of water was released. Much of the melting was attributed to the pyroclastic flow that took place on 22 January 2001 and produced a 14.2 km lahar with 68 000 m3 of water. Among the many types of volcanic events, pyroclastic flows were the most effective in causing sudden snowmelt, although small explosions were also effective since they deposited incandescent material on the glacier. The collapse of the plinian columns covered the glacier with pyroclasts and increased its volume. The existence of control points for georeferencing and a knowledge of the topography underlying the glacier previous to the eruption would have provided more accurate and useful results for hazard prevention.


Sign in / Sign up

Export Citation Format

Share Document