Experimental constraints on metal transport in fumarolic gases

2020 ◽  
Vol 400 ◽  
pp. 106929
Author(s):  
C.J. Renggli ◽  
S. Klemme
2016 ◽  
Author(s):  
Alison E. O'Connor ◽  
◽  
Aaron J. Beck ◽  
Aaron J. Beck ◽  
Elizabeth A. Canuel ◽  
...  

2021 ◽  
pp. 104933
Author(s):  
Md Abu Raihan Chowdhury ◽  
David M. Singer ◽  
Elizabeth Herndon

Geothermics ◽  
1986 ◽  
Vol 15 (2) ◽  
pp. 211-215 ◽  
Author(s):  
H Shinohara ◽  
S Matsuo
Keyword(s):  

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Ane K. Engvik ◽  
Heinrich Taubald ◽  
Arne Solli ◽  
Tor Grenne ◽  
Håkon Austrheim

New stable isotopic data from mineral separates of albite, scapolite, amphibole, quartz, and calcite of metasomatic rocks (Bamble lithotectonic domain) give increased knowledge on fluid type, source, and evolution during metamorphism. Albite from a variety of albitites givesδ18OSMOWvalues of 5.1–11.1‰, while quartz from clinopyroxene-bearing albitite gives 11.5–11.6‰.δ18OSMOWvalues for calcite samples varies between 3.4 and 12.4‰and shows more consistentδ13C values of −4.6 to-6.0‰. Amphibole from scapolite metagabbro yields aδ18OSMOWvalue of 4.3 to 6.7‰andδDSMOWvalue of −84 to −50‰, while the scapolite givesδ18OSMOWvalues in the range of 7.4 to10.6‰. These results support the interpretation that the original magmatic rocks were metasomatised by seawater solutions with a possible involvement from magmatic fluids. Scapolitisation and albitisation led to contrasting chemical evolution with respect to elements like P, Ti, V, Fe, and halogens. The halogens deposited as Cl-scapolite were dissolved by albitisation fluid and reused as a ligand for metal transport. Many of the metal deposits in the Bamble lithotectonic domain, including Fe-ores, rutile, and apatite deposits formed during metasomatism. Brittle to ductile deformation concurrent with metasomatic infiltration illustrates the dynamics and importance of metasomatic processes during crustal evolution.


Sign in / Sign up

Export Citation Format

Share Document