subterranean estuary
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 18)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Vol 3 ◽  
Author(s):  
Darren A. Chevis ◽  
T. Jade Mohajerin ◽  
Ningfang Yang ◽  
Jaye E. Cable ◽  
E. Troy Rasbury ◽  
...  

Rare earth elements (REE) and Nd isotope compositions of surface and groundwaters from the Indian River Lagoon in Florida were measured to investigate the influence of submarine groundwater discharge (SGD) on these parameters in coastal waters. The Nd flux of the terrestrial component of SGD is around 0.7±0.03 μmol Nd/day per m of shoreline across the nearshore seepage face of the subterranean estuary. This translates to a terrestrial SGD Nd flux of 4±0.2 mmol/day for the entire 5,880 m long shoreline of the studied portion of the lagoon. The Nd flux from bioirrigation across the nearshore seepage face is 1±0.05 μmol Nd/day per m of shoreline, or 6±0.3 mmol/day for the entire shoreline. The combination of these two SGD fluxes is the same as the local, effective river water flux of Nd to the lagoon of 12.7±5.3 mmol/day. Using a similar approach, the marine-sourced SGD flux of Nd is 31.4±1.6 μmol Nd/day per m of shoreline, or 184±9.2 mmol/day for the investigated portion of the lagoon, which is 45 times higher than the terrestrial SGD Nd flux. Terrestrial-sourced SGD has an εNd(0) value of −5±0.42, which is similar to carbonate rocks (i.e., Ocala Limestone) from the Upper Floridan Aquifer (−5.6), but more radiogenic than the recirculated marine SGD, for which εNd(0) is −7±0.24. Marine SGD has a Nd isotope composition that is identical to the εNd(0) of Fe(III) oxide/oxyhydroxide coated sands of the surficial aquifer (−7.15±0.24 and −6.98±0.36). These secondary Fe(III) oxides/oxyhydroxides formed during subaerial weathering when sea level was substantially lower during the last glacial maximum. Subsequent flooding of these surficial sands by rising sea level followed by reductive dissolution of the Fe(III) oxide/oxyhydroxide coatings can explain the Nd isotope composition of the marine SGD component. Surficial waters of the Indian River Lagoon have an εNd(0) of −6.47±0.32, and are a mixture of terrestrial and marine SGD components, as well as the local rivers (−8.63 and −8.14). Nonetheless, the chief Nd source is marine SGD that has reacted with Fe(III) oxide/oxyhydroxide coatings on the surficial aquifer sands of the subterranean estuary.


2021 ◽  
Vol 8 ◽  
Author(s):  
Andrea J. Pain ◽  
Jonathan B. Martin ◽  
Caitlin R. Young

Submarine groundwater discharge (SGD) to coastal zones contributes terrestrial freshwater and nutrients that may support harmful algal blooms (HABs). The magnitude of nutrient exports via SGD depends on volumes of fresh groundwater discharge, its chemical composition, and modifications by biogeochemical processing within subterranean estuaries. Thus, the ability to upscale SGD exports requires knowing the range of chemical composition of inland groundwater and how those compositions may be transformed as fresh and saltwater mix within subterranean estuaries. These processes may create heterogeneous magnitudes of solute exports, even at small spatial scales, and such heterogeneities have rarely been assessed for regional or global SGD nutrient export estimates. To evaluate heterogeneity in subterranean estuary processes and nutrient export, we collected seasonal pore water samples in 2015–2016 at three proximal (<20 km) subterranean estuary sites in Indian River Lagoon, FL. Sites have homogenous hydrogeological settings, but differ in land use and coastal features, and include a mangrove site, an urban site, and a site offshore of a natural wetland. All sites exhibit little variation through time in nutrient concentrations and modeled SGD rates. In contrast, each site exhibits significantly different nutrient concentrations of potential fresh groundwater sources, fresh groundwater discharge volumes, and nutrient transformations within subterranean estuaries. Groundwater specific discharge correlates with nutrient concentrations, suggesting that higher residence times in the subterranean estuary increase biogeochemical transformations that reduce anthropogenic nutrient loads but increase in situ nutrient sources derived from organic matter remineralization. The differences in transformations lead to SGD nutrient contributions that differ by orders of magnitude between sites and have N:P ratios that are greater than the Redfield ratio (15) for the mangrove (29) and urban sites (28), but less than the Redfield ratio for the wetland site (8). These results indicate that heterogeneity of both absolute and relative nutrient export via SGD complicates integration of nutrient fluxes across regional coastal zones and evaluations of its impacts to coastal ecosystems. A better understanding of the drivers of heterogeneity, including subterranean estuary processes, land use, coastal topography, and vegetation dynamics could improve assessments of regional nutrient loading and upscaling for estimates of global solute cycles.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hannelore Waska ◽  
Heike Simon ◽  
Soeren Ahmerkamp ◽  
Janek Greskowiak ◽  
Janis Ahrens ◽  
...  

Advective flows of seawater and fresh groundwater through coastal aquifers form a unique ecohydrological interface, the subterranean estuary (STE). Here, freshly produced marine organic matter and oxygen mix with groundwater, which is low in oxygen and contains aged organic carbon (OC) from terrestrial sources. Along the groundwater flow paths, dissolved organic matter (DOM) is degraded and inorganic electron acceptors are successively used up. Because of the different DOM sources and ages, exact degradation pathways are often difficult to disentangle, especially in high-energy environments with dynamic changes in beach morphology, source composition, and hydraulic gradients. From a case study site on a barrier island in the German North Sea, we present detailed biogeochemical data from freshwater lens groundwater, seawater, and beach porewater samples collected over different seasons. The samples were analyzed for physico-chemistry (e.g., salinity, temperature, dissolved silicate), (reduced) electron acceptors (e.g., oxygen, nitrate, and iron), and dissolved organic carbon (DOC). DOM was isolated and molecularly characterized via soft-ionization ultra-high-resolution mass spectrometry, and molecular formulae were identified in each sample. We found that the islands’ freshwater lens harbors a surprisingly high DOM molecular diversity and heterogeneity, possibly due to patchy distributions of buried peat lenses. Furthermore, a comparison of DOM composition of the endmembers indicated that the Spiekeroog high-energy beach STE conveys chemically modified, terrestrial DOM from the inland freshwater lens to the coastal ocean. In the beach intertidal zone, porewater DOC concentrations, lability of DOM and oxygen concentrations, decreased while dissolved (reduced) iron and dissolved silicate concentrations increased. This observation is consistent with the assumption of a continuous degradation of labile DOM along a cross-shore gradient, even in this dynamic environment. Accordingly, molecular properties of DOM indicated enhanced degradation, and “humic-like” fluorescent DOM fraction increased along the flow paths, likely through accumulation of compounds less susceptible to microbial consumption. Our data indicate that the high-energy beach STE is likely a net sink of OC from the terrestrial and marine realm, and that barrier islands such as Spiekeroog may act as efficient “digestors” of organic matter.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiayang Yu ◽  
Pei Xin ◽  
Chengji Shen ◽  
Ling Li

While tides of multiple constituents are common in coastal areas, their effects on submarine groundwater discharge (SGD) and salinity distributions in unconfined coastal aquifers are rarely examined, with the exception of a recent study that explored such effects on unconfined aquifers with fixed inland freshwater input. For a large proportion of the global coastline, the inland areas of coastal aquifers are topography-limited and controlled by constant heads. Based on numerical simulations, this article examines the variation of SGD and salinity distributions in coastal unconfined aquifers with fixed-head inland boundaries at different distances from the shoreline (i.e., 50, 100, 150, and 200 m). The results showed that the fluctuation intensity of freshwater input was enhanced as the inland aquifer extent decreased, e.g., the range of tide-induced fluctuations in freshwater input increased by around 5 times as the inland aquifer extent decreased from 200 to 50 m. The frequency spectra of the fluctuations of SGD and salinity distributions showed that the coastal aquifer of a shorter inland aquifer extent smoothed out fewer high-frequency tidal constituents but enhanced interaction among different tidal constituents. The interaction among tidal constituents generated new low-frequency signals in the freshwater input and salinity distributions. Regressions based on functional data analysis demonstrated that the inland freshwater input and salinity distributions at any given moment were related to the antecedent (previous) tidal conditions weighted using the probability density function of the Gamma distribution. The influence of the antecedent tidal conditions depended on the inland aquifer extent.


2020 ◽  
Vol 160 ◽  
pp. 111570
Author(s):  
Xiaogang Chen ◽  
Qi Ye ◽  
Christian J. Sanders ◽  
Jinzhou Du ◽  
Jing Zhang

2020 ◽  
Vol 65 (12) ◽  
pp. 3098-3113
Author(s):  
Wei Wen Wong ◽  
Andrew Applegate ◽  
Seng Chee Poh ◽  
Perran L. M. Cook

2020 ◽  
Vol 725 ◽  
pp. 138220
Author(s):  
Shan Jiang ◽  
Yixue Zhang ◽  
Jie Jin ◽  
Ying Wu ◽  
Yongjun Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document