A better insight on physics involved in the self-starting of a straight-blade Darrieus wind turbine by means of two-dimensional Computational Fluid Dynamics

2021 ◽  
Vol 218 ◽  
pp. 104793
Author(s):  
Omar S. Mohamed ◽  
Ahmed M.R. Elbaz ◽  
Alessandro Bianchini
2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Yichen Jiang ◽  
Peidong Zhao ◽  
Li Zou ◽  
Zhi Zong ◽  
Kun Wang

Abstract The offshore wind industry is undergoing a rapid development due to its advantage over the onshore wind farm. The vertical axis wind turbine (VAWT) is deemed to be potential in offshore wind energy utilization. A design of the offshore vertical axis wind turbine with a deflector is proposed and studied in this paper. Two-dimensional computational fluid dynamics (CFD) simulation is employed to investigate the aerodynamic performance of wind turbine. An effective method of obtaining the blade’s angle of attack (AoA) is introduced in CFD simulation to help analyze the blade aerodynamic torque variation. The numerical simulations are validated against the measured torque and wake velocity, and the results show a good agreement with the experiment. It is found that the blade instantaneous torque is correlated with the local AoA. Among the three deflector configurations, the front deflector leads to favorable local flow for the blade, which is responsible for the improved performance.


2018 ◽  
Vol 42 (2) ◽  
pp. 128-135 ◽  
Author(s):  
S Horb ◽  
R Fuchs ◽  
A Immas ◽  
F Silvert ◽  
P Deglaire

NENUPHAR aims at developing the next generation of large-scale floating offshore vertical-axis wind turbine. To challenge the horizontal-axis wind turbine, the variable blade pitch control appears to be a promising solution. This article focuses on blade pitch law optimization and resulting power and thrust gain depending on the operational conditions. The aerodynamics resulting from the implementation of a variable blade pitch control are studied through numerical simulations, either with a three-dimensional vortex code or with two-dimensional Navier-stokes simulations (two-dimensional computational fluid dynamics). Results showed that the three-dimensional vortex code used as quasi-two-dimensional succeeded to give aerodynamic loads in very good agreement with two-dimensional computational fluid dynamics simulation results. The three-dimensional-vortex code was then used in three-dimensional configuration, highlighting that the variable pitch can enhance the vertical-axis wind turbine power coefficient ( Cp) by more than 15% in maximum power point tracking mode and decrease it by more than 75% in power limitation mode while keeping the thrust below its rated value.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Binyet Emmanuel ◽  
Wang Jun

The aim of the present paper is to investigate ways of improving the efficiency of a six-bladed Savonius rotor. The efficiency of Savonius machines is low because of the “negative drag” exerted on the convex part of the blades and also because the torque of standard Savonius rotors varies substantially during one rotation and therefore affects the self starting of the rotor at certain wind angles. Improvement of the efficiency of the Savonius rotor is carried out by increasing the number of blades and also by preventing the wind from impinging on the convex parts. The latter can be done by hiding the convex part of the blades behind a shield or a vane. The present paper shows the results of two-dimensional computational fluid dynamics (CFD) computations, indicating a promising increase of the power coefficient from 0.3 to 0.5.


2018 ◽  
Vol 207 ◽  
pp. 02004
Author(s):  
M. Rajaram Narayanan ◽  
S. Nallusamy ◽  
M. Ragesh Sathiyan

In the global scenario, wind turbines and their aerodynamics are always subjected to constant research for increasing their efficiency which converts the abundant wind energy into usable electrical energy. In this research, an attempt is made to increase the efficiency through the changes in surface topology of wind turbines through computational fluid dynamics. Dimples on the other hand are very efficient in reducing air drag as is it evident from the reduction of drag and increase in lift in golf balls. The predominant factors influencing the efficiency of the wind turbines are lift and drag which are to be maximized and minimized respectively. In this research, surface of turbine blades are integrated with dimples of various sizes and arrangements and are analyzed using computational fluid dynamics to obtain an optimum combination. The analysis result shows that there is an increase in power with about 15% increase in efficiency. Hence, integration of dimples on the surface of wind turbine blades has helped in increasing the overall efficiency of the wind turbine.


Author(s):  
Konrad Bamberger ◽  
Thomas Carolus

The purpose of this work is to identify upper efficiency limits of industrial fans such as axial rotor-only fans, axial with guide vanes, centrifugal rotor-only and centrifugal with volute. The efficiency limit is always a function of the class, the design point within the class and the definition of efficiency (total-to-static and total-to-total). The characteristic Reynolds number is another relevant parameter. First, based on analytical and empirical loss models, a theoretical efficiency limit is estimated. A set of idealizing assumptions in the loss models yields efficiencies which are assumed to be an insuperable limit but may be unrealistically high. Second, more realistic efficiency limits are estimated using a computational fluid dynamics-based optimization scheme, seeking for the best designs and hence the maximum achievable efficiencies in all classes. Given the self-imposed constraints in the geometrical parameter space considered, the thus-obtained practical efficiency limits can only be exceeded by admitting more complex geometries of the fans.


Sign in / Sign up

Export Citation Format

Share Document