Using supervised learning techniques to automatically classify vortex-induced vibration in long-span bridges

2022 ◽  
Vol 221 ◽  
pp. 104904
Author(s):  
Jaeyeong Lim ◽  
Sunjoong Kim ◽  
Ho-Kyung Kim
2014 ◽  
Vol 633-634 ◽  
pp. 1263-1266
Author(s):  
Huang Yu

For modern long-span bridges, both the optimization of aerodynamic shape and the increase of torsional stiffness according to the result of the wind tunnel experiment could avoid the flutter instability.Vortex-inducedvibration with relatively large amplitude happens easily at low wind speeds. In this paper, based on wind tunnel experiment, by studying on the vortex-induced vibration characteristics of a long-span suspension bridge with single cable plane, aerodynamic measures for easing the vortex-induced vibration are given.


2011 ◽  
Vol 383-390 ◽  
pp. 5071-5075
Author(s):  
Su Qi ◽  
Xing Xing Chen ◽  
Qing Xu

Wind-induced vibration of long span bridges mainly as flutter, buffeting and vortex induced vibration. Buffeting and vortex-induced vibration will not cause the devastating destruction of the bridge, while the chatter is the elastic system in the air of self-excited vibration, when the vibration system from the air flow in the absorption of energy and the energy is greater than the energy damping When consumed, they cause divergence of the self-excited aerodynamic flutter vibration. If the critical flutter wind speed is less than in the bridge office potential wind speed, the bridge flutter may occur caused devastating damage. According to modern control theory, a theoretical analysis is conducted on the active control of cable-stayed bridge flutter, it is established that the controlled equation of cable-stayed bridge controlled by a single active mass damper and the motion equation of a single AMD to determine the calculation method of the critical flutter velocity under the controlled status of the cable-stayed bridge. An example shows that a single ADM is a good means to prevent the flutter damage of long-span cable-stayed bridges.


2018 ◽  
Vol 18 (11) ◽  
pp. 1850136 ◽  
Author(s):  
Kun Xu ◽  
Yaojun Ge ◽  
Lin Zhao ◽  
Xiuli Du

Due to the lack of analytic technique for simulating the vortex-induced vibration (VIV) of long-span bridges, a combination of the VIV semi-empirical model with the structural equation of motion is widely employed to calculate the responses of bridge structures. However, the applicability of this method has seldom been investigated before. In this study, the theoretical defects of the conventional combination strategy (i.e. the finite element procedure or the linear normal mode procedure, LNM) are first discussed, a more theoretically reliable approach (the nonlinear norm mode approach, NNM) is then proposed, and the closed-form expression for the NNM of the VIV system is derived. The accuracy of the proposed method is further illustrated by two case studies. This new approach offers a theoretically reliable tool for analyzing the VIV of long-span bridges. It can also be applied to the process of VIV fatigue analysis or control strategy optimization.


Sign in / Sign up

Export Citation Format

Share Document