Use of artificial neural network for predicting effluent quality parameters and enabling wastewater reuse for climate change resilience – A case from Jordan

2021 ◽  
Vol 44 ◽  
pp. 102423
Author(s):  
Ziad Al-Ghazawi ◽  
Rami Alawneh
2014 ◽  
Vol 668-669 ◽  
pp. 994-998
Author(s):  
Jin Ting Ding ◽  
Jie He

This study aims at providing a back propagation-artificial neural network (BP-ANN) model on forecasting the water quality change trend of Qiantang River basin. To achieve this goal, a three-layer (one input layer, one hidden layer, and one output layer) BP-ANN with the LM regularization training algorithm was used. Water quality variables such as pH value, dissolved oxygen, permanganate index and ammonia-nitrogen was selected as the input data to obtain the output of the neural network. The ANN structure with 17 hidden neurons obtained the best selection. The comparison between the original measured and forecast values of the ANN model shows that the relative errors, with a few exceptions, were lower than 9%. The results indicated that the BP neural network can be satisfactorily applied to forecast precise water quality parameters and is suitable for pre-alarm of water quality trend.


PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0224813 ◽  
Author(s):  
Zahra Asadgol ◽  
Hamed Mohammadi ◽  
Majid Kermani ◽  
Alireza Badirzadeh ◽  
Mitra Gholami

Author(s):  
Rita Maria Joseph ◽  
Alna D Manjaly ◽  
Sreeram Unni ◽  
Able E C ◽  
Vinitha Sharon

Assessment and prediction of water quality is a vital tool for the management of water resources systems. It is necessitous for human existence, agriculture and industry. This project delves into the prediction of groundwater quality parameters and groundwater quality criterion based on the Artificial Neural Network Modelling with the study area as Kerala, a state of India. Two models were developed. The first model employs the water quality parameters such as pH, electrical conductivity, total hardness as the input parameters and calcium, magnesium, chloride, fluoride, nitrate concentration as the output parameters. The second model was designed by giving input as, input values and the predicted output values of the first model, and groundwater quality criterion corresponding to each location as the target values. The output qualitative parameters were estimated and compared with the measured values, to evaluate the influence of key input parameters. The number of neurons to be given in the hidden layer was decided by the trial-and-error method. Data of 506 water samples from all over Kerala were collected for modelling.


Sign in / Sign up

Export Citation Format

Share Document