An adaptive and general model for label noise detection using relative probabilistic density

2021 ◽  
pp. 107907
Author(s):  
Shuyin Xia ◽  
Longhai Huang ◽  
Guoyin Wang ◽  
Xinbo Gao ◽  
Yabin Shao ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6718
Author(s):  
Wei Feng ◽  
Yinghui Quan ◽  
Gabriel Dauphin

Real-world datasets are often contaminated with label noise; labeling is not a clear-cut process and reliable methods tend to be expensive or time-consuming. Depending on the learning technique used, such label noise is potentially harmful, requiring an increased size of the training set, making the trained model more complex and more prone to overfitting and yielding less accurate prediction. This work proposes a cleaning technique called the ensemble method based on the noise detection metric (ENDM). From the corrupted training set, an ensemble classifier is first learned and used to derive four metrics assessing the likelihood for a sample to be mislabeled. For each metric, three thresholds are set to maximize the classifying performance on a corrupted validation dataset when using three different ensemble classifiers, namely Bagging, AdaBoost and k-nearest neighbor (k-NN). These thresholds are used to identify and then either remove or correct the corrupted samples. The effectiveness of the ENDM is demonstrated in performing the classification of 15 public datasets. A comparative analysis is conducted concerning the homogeneous-ensembles-based majority vote method and consensus vote method, two popular ensemble-based label noise filters.


2006 ◽  
Author(s):  
Otmar E. Varela ◽  
Elvira Salgado ◽  
Virginia Lazio

Author(s):  
Edgar Ofuchi ◽  
Ana Leticia Lima Santos ◽  
Thiago Sirino ◽  
Henrique Stel ◽  
Rigoberto Morales

Author(s):  
Yusuke Nakatake ◽  
Makoto Okabe ◽  
Shota Sato

Abstract In this paper, we carried out PIND (Particle Impact Noise Detection) test and X-ray inspection of a transistor in a TO-18 package for commercial and industrial applications. From our evaluation results, we explain the validity of the PIND test by comparing PIND test and X-ray inspection results. We make clear that PIND test is able to detect internal foreign material that may be transparent to X-ray inspection. In addition, we report analysis results of internal foreign materials from defective devices. This matter suggests that a problem is contamination control in the manufacturing process, most likely the sealing process.


Sign in / Sign up

Export Citation Format

Share Document