scholarly journals Enumerating partial linear transformations in a similarity class

Author(s):  
Akansha Arora ◽  
Samrith Ram
2006 ◽  
Vol 13 (02) ◽  
pp. 295-306
Author(s):  
Jirasook Ittharat ◽  
R. P. Sullivan

Let P(X) be the semigroup of all partial transformations of a set X. A subsemigroup S of P(X) is factorisable if S = GE = EH, where G, H are subgroups of S and E is the set of idempotents in S. In 2001, Jampachon, Saichalee and Sullivan proved a simple result that generalized most of the previous work on factorisable subsemigroups of P(X). They also determined when the semigroup T(V) of all linear transformations of a vector space V is factorisable. In this paper, we extend that work to partial linear transformations of V and consider the notion of locally factorisable for such semigroups.


Author(s):  
R. P. Sullivan

Let V be any vector space and P(V) the set of all partial linear transformations defined on V, that is, all linear α: A → B, where A, B are subspaces of V. Then P(V) is a semigroup under composition, which is partially ordered by ⊆ (that is, α ⊆ β if and only if dom α ⊆ dom β and α = β | dom α). We compare this order with the so-called 'natural partial order' ≤ on P(V) and we determine their meet and join. We also describe all elements of P(V) that are minimal (or maximal) with respect to each of these four orders, and we characterize all elements that are 'compatible' with them. In addition, we answer similar questions for the semigroup T(V) consisting of all α ∈ P(V) whose domain equals V. Other orders have been defined by Petrich on any regular semigroup: three of them form a chain below ≤, and we show that two of these are equal on the semigroup P(V) and on the ring T(V). We also consider questions for these orders that are similar to those already mentioned


Author(s):  
C. MENDES ARAÚJO ◽  
S. MENDES-GONÇALVES

Abstract Let V be an infinite-dimensional vector space over a field F and let $I(V)$ be the inverse semigroup of all injective partial linear transformations on V. Given $\alpha \in I(V)$ , we denote the domain and the range of $\alpha $ by ${\mathop {\textrm {dom}}}\,\alpha $ and ${\mathop {\textrm {im}}}\,\alpha $ , and we call the cardinals $g(\alpha )={\mathop {\textrm {codim}}}\,{\mathop {\textrm {dom}}}\,\alpha $ and $d(\alpha )={\mathop {\textrm {codim}}}\,{\mathop {\textrm {im}}}\,\alpha $ the ‘gap’ and the ‘defect’ of $\alpha $ . We study the semigroup $A(V)$ of all injective partial linear transformations with equal gap and defect and characterise Green’s relations and ideals in $A(V)$ . This is analogous to work by Sanwong and Sullivan [‘Injective transformations with equal gap and defect’, Bull. Aust. Math. Soc.79 (2009), 327–336] on a similarly defined semigroup for the set case, but we show that these semigroups are never isomorphic.


2013 ◽  
Vol 35 ◽  
pp. 229-234 ◽  
Author(s):  
E. Moretti ◽  
G. Collodel ◽  
L. Mazzi ◽  
M. S. Campagna ◽  
N. Figura

Helicobacter pylori(HP) infection, particularly when caused by strains expressing CagA, may be considered a concomitant cause of male and female reduced fertility. This study explored, in 87 HP-infected males, the relationship between infection by CagA-positive HP strains and sperm parameters. HP infection and CagA status were determined by ELISA and Western blotting; semen analysis was performed following WHO guidelines. The amino acid sequence of human enzymes involved in glycolysis and oxidative metabolism were “blasted” with peptides expressed by HP J99. Thirty-seven patients (42.5%) were seropositive for CagA. Sperm motility (18% versus 32%; ), sperm vitality (35% versus 48%; ) and the percentage of sperm with normal forms (18% versus 22%; ) in the CagA-positive group were significantly reduced versus those in the CagA-negative group. All the considered enzymes showed partial linear homology with HP peptides, but four enzymes aligned with four different segments of the samecagisland protein. We hypothesize a relationship between infection by strains expressing CagA and decreased sperm quality. Potentially increased systemic levels of inflammatory cytokines that occur in infection by CagA-positive strains and autoimmune phenomena that involve molecular mimicry could explain the pathogenetic mechanism of alterations observed.


2017 ◽  
Vol 36 (4) ◽  
pp. 1
Author(s):  
Clemens Birklbauer ◽  
David C. Schedl ◽  
Oliver Bimber

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Fanwen Meng ◽  
Jacqueline Jonklaas ◽  
Melvin Khee-Shing Leow

Clinicians often encounter thyroid function tests (TFT) comprising serum/plasma free thyroxine (FT4) and thyroid stimulating hormone (TSH) measured using different assay platforms during the course of follow-up evaluations which complicates reliable comparison and interpretation of TFT changes. Although interconversion between concentration units is straightforward, the validity of interconversion of FT4/TSH values from one assay platform to another with different reference intervals remains questionable. This study aims to establish an accurate and reliable methodology of interconverting FT4 by any laboratory to an equivalent FT4 value scaled to a reference range of interest via linear transformation methods. As a proof-of-concept, FT4 was simultaneously assayed by direct analog immunoassay, tandem mass spectrometry and equilibrium dialysis. Both linear and piecewise linear transformations proved relatively accurate for FT4 inter-scale conversion. Linear transformation performs better when FT4 are converted from a more accurate to a less accurate assay platform. The converse is true, whereby piecewise linear transformation is superior to linear transformation when converting values from a less accurate method to a more robust assay platform. Such transformations can potentially apply to other biochemical analytes scale conversions, including TSH. This aids interpretation of TFT trends while monitoring the treatment of patients with thyroid disorders.


Sign in / Sign up

Export Citation Format

Share Document