Novel peripheral role of Nurr-1/GDNF/AKT trajectory in carvedilol and/or morin hydrate hepatoprotective effect in a model of hepatic ischemia/reperfusion

Life Sciences ◽  
2021 ◽  
pp. 119235
Author(s):  
Nermein F. El Sayed ◽  
Dalaal M. Abdallah ◽  
Azza S. Awad ◽  
Kawkab A. Ahmed ◽  
Hanan S. El-Abhar
MicroRNA ◽  
2020 ◽  
Vol 09 ◽  
Author(s):  
Chrysanthos D. Christou ◽  
Georgios Tsoulfas

Introduction: Ischemia-reperfusion (I/R) injuries are caused by complex interrelated mechanisms and pathways. Regarding the liver, I/R injuries and their clinical manifestations are crucial for the surgical outcome. Despite its importance, there is no broadly accepted therapy either for the prevention or for the management of I/R injury. I/R injury of the liver can occur either during hepatic surgery (warm) or during the transplantation procedure (cold). MicroRNAs play a pivotal role in the mechanism of I/R injury, as they regulate the expression of the cellular participants and humoral factors associated with I/R injury. Objective: In this review, we highlight the microRNAs that are involved in the I/R injury of the liver, and the molecular pathways that they regulate. In addition, we discuss the potential role of circulating microRNAs as biomarkers and their role as pharmacological targets in the prevention, diagnosis and treatment of I/R injuries. Method: We conducted a comprehensive review of the PubMed bibliographic database regarding microRNAs and I/R injuries of the liver. Results: In diagnostics, microRNA panels could replace invasive diagnostic procedures, relieving patients of the associated complications. In therapeutics, microRNA agomirs, antagomirs and other drugs can be used to shift the balance between proapoptotic and survival pathways, to alleviate the liver damage caused by I/R. In transplantation procedures, microRNA profiling could decrease the incidence of early graft dysfunction, especially regarding marginal grafts. Conclusion: Although microRNAs seem a very promising clinical tool in the management of I/R injuries, further research is required, until microRNAs become a novel tool in the diagnosis and monitoring of an I/R injury of the liver.


2005 ◽  
Vol 124 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Taiji Watanabe ◽  
Sunao Kubota ◽  
Masaki Nagaya ◽  
Shoichi Ozaki ◽  
Hiroko Nagafuchi ◽  
...  

2021 ◽  
Vol 28 (9) ◽  
pp. 1671
Author(s):  
Levent Demirtas ◽  
Cebrail Gursul ◽  
Ahmet Gurbuzel ◽  
Ilyas Sayar ◽  
Mehmet Gurbuzel ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A549
Author(s):  
Shigeyuki Kawachi ◽  
Motohide Shimazu ◽  
Masaki Kitajima ◽  
Matthew B. Grisham

2018 ◽  
Vol 49 (5) ◽  
pp. 2060-2072 ◽  
Author(s):  
Daofeng Zheng ◽  
Zhongtang Li ◽  
Xufu Wei ◽  
Rui Liu ◽  
Ai Shen ◽  
...  

Background/Aims: Hepatic ischemia-reperfusion (I/R) injury, which is mainly induced by inflammation and unstable intracellular ions, is a major negative consequence of surgery that compromises hepatic function. However, the exact mechanisms of liver I/R injury have not been determined. Positive crosstalk with the Ca2+/CaMKII pathway is required for complete activation of the TLR4 pathway and inflammation. We previously found that miR-148a, which decreased in abundance with increasing reperfusion time, targeted and repressed the expression of CaMKIIα. In the present study, we examined the role of the miR-148a machinery in I/R-induced Ca2+/CaMKII and TLR4 signaling changes, inflammation, and liver dysfunction in vivo and in vitro. Methods: Liver function was evaluated by serum aminotransferase levels and hematoxylin-eosin (HE) staining. Inflammatory factors were detected by enzyme-linked immunosorbent assay. Gene and protein expression were assessed by RT-PCR and western blot. Small interfering RNA was used to silence target gene expression. HE staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to measure hepatic tissue apoptosis. These assays were performed to identify factors upregulated in hepatic I/R injury and downregulated by miR-148a. Results: We manifested that expression of CaMKIIα and phosphorylation of TAK1 and IRF3 were elevated in hypoxia/reoxygenation (H/R)-treated primary Kupffer cells (KCs) and liver tissue of I/R-treated mice, but these effects were attenuated by treatment with miR-148a mimic and were accompanied by the alleviation of liver dysfunction and hepatocellular apoptosis. Luciferase reporter experiments showed that miR148a suppressed luciferase activity by almost 60%. Moreover, knockdown of CaMKIIα in H/R KCs led to significant deficiencies in p-TAK1, P-IRF3, IL-6, and TNF-α, which was consistent with the effects of miR-148a overexpression. Otherwise, the same trend of activation of TAK1 and IRF3 and inflammatory factors in vitro was observed in the siTAK1 + siIRF3 group compared with the siCaMKIIα group. Conclusion: Taken together, we conclude that miR-148a may mitigate hepatic I/R injury by ameliorating TLR4-mediated inflammation via targeting CaMKIIα in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document