Role of microRNA-15a-5p/Sox9/NF-κB axis in inflammatory factors and apoptosis of murine nucleus pulposus cells in intervertebral disc degeneration

Life Sciences ◽  
2021 ◽  
pp. 119408
Author(s):  
Shujun Zhang ◽  
Sheng Song ◽  
Yin Zhuang ◽  
Jun Hu ◽  
Wei Cui ◽  
...  
2017 ◽  
Vol 97 (8) ◽  
pp. 971-982 ◽  
Author(s):  
Kun Wang ◽  
Wei Liu ◽  
Yu Song ◽  
Xinghuo Wu ◽  
Yukun Zhang ◽  
...  

2019 ◽  
Vol 207 (3-4) ◽  
pp. 165-176
Author(s):  
Yan Zhang ◽  
Yi-Shu Zhang ◽  
Xiao-Juan Li ◽  
Chao-Rong Huang ◽  
Hui-Jin Yu ◽  
...  

Objective: To elaborate the mechanism of miR-150 in the regulation of the NF-κB signal pathway in intervertebral disc degeneration (IDD) by targeting P2X7. Methods: The degenerative and normal intervertebral disc tissues were collected to detect the expressions of miR-150 and P2X7. Nucleus pulposus cells were transfected and divided into different groups. Cell apoptosis was determined by flow cytometry and TUNEL staining. The expressions of IL-6, TNF-α, MMP-3, MMP-13, Cox-2, iNOS, collagen II and aggrecan, as well as NF-κB-associated proteins were measured by qRT-PCR and Western blotting. Furthermore, IDD rat models were established to validate the role of miR-150 in vivo.Results: miR-150 was down-regulated but P2X7 was up-regulated in the degenerative intravertebral disc tissues. The apoptosis of nucleus pulposus cells in the IL-1β-induced group with the transfection of miR-150 mimic and siP2X7 was significantly decreased, with reduced levels of IL-6, TNF-α, MMP-3, MMP-13, Cox-2 and iNOS, increased levels of collagen II and aggrecan, as well as decreased P2X7, p-p65/p65 and cleaved caspase-3. However, the above factors showed an opposite tendency after treatment with miR-150 inhibitor. Furthermore, the P2X7 siRNA transfection could reverse the effects caused by miR-150 inhibitor. Simultaneously, pcDNA P2X7 transfection also inhibited the function of miR-150 mimic in IL-1β-induced nucleus pulposus cells. In vivoexperiments further verified the protective role of miR-150 in IDD rats. Conclusion: miR-150 may alleviate the degeneration of the intervertebral disc partially since it could restrict the NF-κB pathway by targeting P2X7, and thereby inhibiting IL-1β-induced matrix catabolism, inflammatory responses and apoptosis of the nucleus pulposus cells.


Spine ◽  
2017 ◽  
Vol 42 (13) ◽  
pp. E757-E766 ◽  
Author(s):  
Ji Guo ◽  
Minghao Shao ◽  
Feizhou Lu ◽  
Jianyuan Jiang ◽  
Xinlei Xia

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Shufen Liu ◽  
Yuhao Cheng ◽  
Yuqi Tan ◽  
Jingcheng Dong ◽  
Qin Bian

Objectives. Aberrant transforming growth factor β (TGFβ) activation is detrimental to both nucleus pulposus (NP) cells and cartilage endplates (CEPs), which can lead to intervertebral disc degeneration (IDD). Ligustrazine (LIG) reduces the expression of inflammatory factors and TGFβ1 in hypertrophic CEP to prevent IDD. In this study, we investigate the effects of LIG on NP cells and the TGFβ signaling. Design. LIG was injected to the lumbar spinal instability (LSI) mouse model. The effect of LIG was evaluated by intervertebral disc (IVD) score in the LSI mouse model. The expression of activated TGFβ was examined using immunostaining with pSmad2/3 antibody. The upright posture (UP) rat model was also treated and evaluated in the same manner to assess the effect of LIG. In ex vivo study, IVDs from four-week old mice were isolated and treated with 10−5, 10−6, and 10−7 M of LIG. We used western blot to detect activated TGFβ expression. TGFβ-treated human nucleus pulposus cells (HNPCs) were cotreated with optimized dose of LIG in vitro. Immunofluorescence staining was performed to determine pSmad2/3, connective tissue growth factor (CCN2), and aggrecan (ACAN) expression levels. Results. IVD score and the percentage of pSmad2/3+ NP cells were low in LIG-treated LSI mice in comparison with LSI mice, but close to the levels in the Sham group. Similarly, LIG reduced the overexpression of TGFβ1 in NP cells. The inhibitory effect of LIG was dose dependent. A dose of 10−5 M LIG not only strongly attenuated Smad2/3 phosphorylation in TGFβ-treated IVD ex vivo but also suppressed pSmad2/3, CCN2, and ACAN expression in TGFβ-treated NP cells in vitro. Conclusions. LIG prevents IDD via suppression of TGFβ overactivation in NP cells.


Sign in / Sign up

Export Citation Format

Share Document