Allosteric activation of Hsp70 reduces mutant huntingtin levels, the clustering of N-terminal fragments, and their nuclear accumulation

Life Sciences ◽  
2021 ◽  
Vol 285 ◽  
pp. 120009
Author(s):  
Brígida R. Pinho ◽  
Liliana M. Almeida ◽  
Michael R. Duchen ◽  
Jorge M.A. Oliveira
2020 ◽  
Author(s):  
Sofia Alexandra Milheiro ◽  
Joana Gonçalves ◽  
Ricardo Lopes ◽  
Margarida Madureira ◽  
Lis Lobo ◽  
...  

<p><a>A small library of “half-sandwich” cyclopentadienylruthenium(II) compounds of general formula [(</a>η<sup>5</sup>-C<sub>5</sub>R<sub>5</sub>)Ru(PPh<sub>3</sub>)(N-N)][PF<sub>6</sub>], a scaffold hitherto unfeatured in the toolbox of antiplasmodials, was screened for activity against the blood stage of CQ-sensitive 3D7-GFP, CQ-resistant Dd2 and artemisinin-resistant IPC5202 <i>Plasmodium falciparum</i> strains, and the liver stage of <i>P. berghei</i>. The best performing compounds displayed dual-stage activity, with single-digit nM IC<sub>50</sub> values against blood stage malaria parasites, nM activity against liver stage parasites, and residual cytotoxicity against mammalian cells (HepG2, Huh7). Parasitic absorption/distribution of 7-nitrobenzoxadiazole-appended fluorescent compounds <b>Ru4</b> and <b>Ru5</b> was investigated by confocal fluorescence microscopy, revealing parasite-selective absorption in infected erythrocytes and nuclear accumulation of both compounds. The lead compound <b>Ru2</b> impaired asexual parasite differentiation, exhibiting fast parasiticidal activity against both ring and trophozoite stages of a synchronized <i>P. falciparum</i> 3D7 strain. These results point to cyclopentadienylruthenium(II) complexes as a highly promising chemotype for the development of dual-stage antiplasmodials.</p>


Sign in / Sign up

Export Citation Format

Share Document