cleavage fragment
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 2)

H-INDEX

17
(FIVE YEARS 0)

2021 ◽  
Vol 118 (34) ◽  
pp. e2102885118
Author(s):  
Manabu Yoshikawa ◽  
Yong-Woon Han ◽  
Hirofumi Fujii ◽  
Shu Aizawa ◽  
Tatsuya Nishino ◽  
...  

Small interfering RNAs (siRNAs) are often amplified from transcripts cleaved by RNA-induced silencing complexes (RISCs) containing a small RNA (sRNA) and an Argonaute protein. Amplified siRNAs, termed secondary siRNAs, are important for reinforcement of target repression. In plants, target cleavage by RISCs containing 22-nucleotide (nt) sRNA and Argonaute 1 (AGO1) triggers siRNA amplification. In this pathway, the cleavage fragment is converted into double-stranded RNA (dsRNA) by RNA-dependent RNA polymerase 6 (RDR6), and the dsRNA is processed into siRNAs by Dicer-like proteins. Because nonspecific RDR6 recruitment causes nontarget siRNA production, it is critical that RDR6 is specifically recruited to the target RNA that serves as a template for dsRNA formation. Previous studies showed that Suppressor of Gene Silencing 3 (SGS3) binds and stabilizes 22-nt sRNA–containing AGO1 RISCs associated with cleaved target, but how RDR6 is recruited to targets cleaved by 22-nt sRNA–containing AGO1 RISCs remains unknown. Here, using cell-free extracts prepared from suspension-cultured Arabidopsis thaliana cells, we established an in vitro system for secondary siRNA production in which 22-nt siRNA–containing AGO1-RISCs but not 21-nt siRNA–containing AGO1-RISCs induce secondary siRNA production. In this system, addition of recombinant Silencing Defective 5 (SDE5) protein remarkably enhances secondary siRNA production. We show that RDR6 is recruited to a cleavage fragment by 22-nt siRNA–containing AGO1-RISCs in coordination with SGS3 and SDE5. The SGS3–SDE5–RDR6 multicomponent recognition system and the poly(A) tail inhibition may contribute to securing specificity of siRNA amplification.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 273-273
Author(s):  
Robert A. Campbell ◽  
Mark Cody ◽  
Yasuhiro Kosaka ◽  
Heather D Campbell ◽  
Christian Yost

Abstract BACKGROUND: Neutrophil extracellular traps (NET) are extracellular lattices of decondensed chromatin associated with anti-microbial proteins and degradative enzymes released by polymorphonuclear leukocytes (PMN) to trap and kill invading microbes. Dysregulated NET formation, however, contributes to inflammatory tissue damage. We have identified a novel NET-inhibitory peptide, neonatal NET-Inhibitory Factor (nNIF), present in the fetal circulation. nNIF is formed as a carboxy-terminus cleavage fragment of alpha-1 antitrypsin (AAT), an abundant, circulating protease inhibitor with homologs in human and mouse blood. However, the exact mechanisms by which nNIF is generated in fetal and neonatal blood remains unknown. OBJECTIVE: High temperature requirement A 1 (HTRA1) is expressed in the placenta during fetal development and inhibits AAT. We hypothesized that placentally expressed HTRA1, a serine protease, regulates the formation of NET-inhibitory peptides, such as nNIF, through cleavage of AAT. DESIGN/METHODS: Term and preterm placenta were lysed and probed for HTRA1 expression. HTRA1 and AAT plasma expression from term and preterm infants and adults were determined by ELISA. Recombinant, bioactive HTRA1 or placenta-eluted HTRA1 were incubated with AAT and the generation of carboxy-terminus fragments of AAT was assessed using western blotting and mass spectrometry. Fragments of AAT generated by HTRA1 were incubated with LPS-stimulated PMNs and NET formation was examined qualitatively using live cell imaging and quantitatively using a high throughput fluorescence assay. The effect of the HTRA-AAT cleavage fragment on reactive oxygen species generation, neutrophil chemotaxis, phagocytosis, and bacterial killing was measured using flow cytometry, a modified Boyden chamber asssay, neutrophil labeled Escherichia coli uptake assay, and a bacterial killing assay with a pathogenic strain of Escherichia coli, respectively. Finally, NET formation was evaluated qualitatively and quantitatively in murine PMNs isolated from neonatal WT and HTRA1-/- pups between 1-3, 4-6 and 7-10 days after birth to determine when PMNs become NET-competent. RESULTS: Term and preterm infant placentas express HTRA1, and we detected significantly (p<0.05) higher levels of HTRA1 in plasma from term (465.1±71.8 µg/mL) and preterm (385.9±71.3 µg/mL) infant cord blood compared to adults (58.6±11.6 µg/mL). Recombinant, bioactive HTRA1 and placenta-derived HTRA1 incubated with AAT generate a 4kD AAT fragment based on western blot and mass spectrometry similar to the nNIF fragment found in cord blood from term and preterm infants. Pre-incubation of this fragment with LPS-stimulated PMNs significantly inhibits NET formation (p<0.05). The cleavage fragment from HTRA1-AAT, however, has no effect on reactive oxygen species generation, chemotaxis, or phagocytosis. However, incubation of this fragment with LPS-stimulated PMNs significantly (p<0.05) reduces NET-associated bacterial killing by 62% compared to a scrambled HTRA-AAT control peptide. In addition, the HTRA1-AAT fragment significantly (p<0.05) reduces nuclear decondensation by 93% compared to LPS-stimulated PMN, suggesting this fragment inhibits PAD4 activation similar to other NIFs previously examined. Neonatal murine plasma contains a 4kD AAT fragment which inhibits NET formation by adult mouse PMNs, indicating that nNIF generation is conserved in mice. Neonatal PMNs stimulated with LPS exhibit delayed NET formation following birth with PMNs becoming NET-competent by day 8 of life. However, neonatal PMNs from pups born from HTRA1-/- deficient mice generate significantly (p<0.05) more NETs between day 4-6 of life compared to WT controls, suggesting that HTRA1 regulates NET formation through nNIF production. CONCLUSIONS: Placental HTRA1 interacts with AAT to generate a carboxy-terminus cleavage fragment of AAT with identical NET-inhibitory properties to nNIF. Our data strongly indicate that placental HTRA1 generates nNIF in the fetal circulation. We speculate that nNIF participates in the required tolerance to new microbial antigens encountered during the transition to extrauterine life. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Tina Harmuth ◽  
Caroline Prell-Schicker ◽  
Jonasz J. Weber ◽  
Frank Gellerich ◽  
Claudia Funke ◽  
...  

2016 ◽  
Vol 32 (4) ◽  
pp. 399-408 ◽  
Author(s):  
Maria E. Moreno-Fernandez ◽  
Julio Aliberti ◽  
Sander Groeneweg ◽  
Jörg Köhl ◽  
Claire A. Chougnet
Keyword(s):  

2015 ◽  
Vol 7 (294) ◽  
pp. 294ra106-294ra106 ◽  
Author(s):  
Matthew S. Barnabei ◽  
Frances V. Sjaastad ◽  
DeWayne Townsend ◽  
Fikru B. Bedada ◽  
Joseph M. Metzger

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Dan Zhang ◽  
Jun Zhou ◽  
Fei Xia ◽  
Zhenghui Kang ◽  
Wenhao Hu

2011 ◽  
Vol 301 (5) ◽  
pp. C1175-C1185 ◽  
Author(s):  
Julia L. Cook ◽  
Akannsha Singh ◽  
Dawn deHaro ◽  
Jawed Alam ◽  
Richard N. Re

Several transmembrane receptors are documented to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. Our prior studies indicate that a population of the 7-transmembrane angiotensin type-1 receptor (AT1R) is cleaved in a ligand-augmented manner after which the cytoplasmic, carboxy-terminal cleavage fragment (CF) traffics to the nucleus. In the present report, we determine the precise cleavage site within the AT1R by mass spectrometry and Edman sequencing. Cleavage occurs between Leu(305) and Gly(306) at the junction of the seventh transmembrane domain and the intracellular cytoplasmic carboxy-terminal domain. To evaluate the function of the CF distinct from the holoreceptor, we generated a construct encoding the CF as an in-frame yellow fluorescent protein fusion. The CF accumulates in nuclei and induces apoptosis in CHO-K1 cells, rat aortic smooth muscle cells (RASMCs), MCF-7 human breast adenocarcinoma cells, and H9c2 rat cardiomyoblasts. All cell types show nuclear fragmentation and disintegration, as well as evidence for phosphotidylserine displacement in the plasma membrane and activated caspases. RASMCs specifically showed a 5.2-fold increase ( P < 0.001) in CF-induced active caspases compared with control and a 7.2-fold increase ( P < 0.001) in cleaved caspase-3 (Asp174). Poly(ADP-ribose)polymerase was upregulated 4.8-fold ( P < 0.001) in CF expressing cardiomyoblasts and colocalized with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). CF expression also induces DNA laddering, the gold-standard for apoptosis in all cell types studied. CF-induced apoptosis, therefore, appears to be a general phenomenon as it is observed in multiple cell types including smooth muscle cells and cardiomyoblasts.


Sign in / Sign up

Export Citation Format

Share Document