The heterogeneous nature of the Southern Tyrrhenian mantle: Evidence from olivine-hosted melt inclusions from back-arc magmas of the Marsili seamount

Lithos ◽  
2010 ◽  
Vol 118 (1-2) ◽  
pp. 1-16 ◽  
Author(s):  
Teresa Trua ◽  
Roberto Clocchiatti ◽  
Pierre Schiano ◽  
Luisa Ottolini ◽  
Michael Marani
2021 ◽  
Author(s):  
◽  
Jacob Leath

<p>The southern Kermadec Arc – Havre Trough (SKAHT) is an intra-oceanic arc – back-arc system where the Pacific plate is subducting beneath the Australian plate. The Kermadec volcanic arc front consists of 33 volcanic centres, four of which host hydrothermal mineralization (Brothers, Haungaroa, Rumble II West, and Clark) such as volcanogenic massive sulfide (VMS) deposits, which are characterised by high concentrations of base and precious metals (e.g., Au, Cu, Zn, Pb). The sources of these metals are strongly tied to the metal contents within underlying magmatic rocks and associated magmatic systems with which the hydrothermal fluids interact. Understanding the sources, movements, and accumulation of metals associated with porphyry copper and exhalative base metal deposits within a subduction – arc setting remains limited.  This study reports major, trace, and volatile element contents in basaltic groundmass glasses and olivine-hosted melt inclusions from lavas from four locations within the arc – back-arc setting of the SKAHT. The focus is on understanding the controls on base metal (Pb, Cu, Zn, Mo, V) contents in the magmas. The sample locations, Rumble III and Rumble II West volcanoes, and back-arc Basins D and I, form an arc-perpendicular transect extending from arc front into the back-arc. The analysed melt inclusion and groundmass glasses are all basalt to basaltic andesite in composition, with back-arc basin samples more mafic than arc front volcano samples. The magmatic evolution of the melts is primarily controlled by crystal fractionation of olivine + pyroxene + plagioclase. All glasses have undergone variable degassing, indicated by an absence of detectable CO₂ and curvilinear decreases in S contents with increasing SiO₂. Of the volatile phases analysed, only Cl appears unaffected by degassing.  Distinct compositional differences are apparent between arc front and back-arc melts. The arc front magmas formed from higher degrees of melting of a less fertile mantle source and are more enriched in trace elements then the back-arc magmas due to greater additions of slab-derived aqueous fluids to their source. Magmas from a single arc front volcano (Rumble II West) incorporate melts that have tapped variably enriched sources, indicating heterogeneity of the mantle at small scales. Significant variation in mantle composition, however, is also apparent laterally along strike of the arc. Rumble III volcano and Basin I lie on an arc-perpendicular transect south of Rumble II West volcano and Basin D. Their greater enrichment in trace elements and higher concentrations of base metals than Rumble II West and Basin D lavas can be attributed to higher fluxes of subduction derived components.  Base metals (Cu, Zn, Pb, Mo, and V) are variably enriched in the SKAHT melts compared with typical mid-ocean ridge basalts with relative enrichments in the order Pb >> Cu > Mo, V > Zn. All metals appear to be affected by mantle metasomatism related to slab-derived fluids, either directly from slab components introduced to the mantle source (e.g., Pb) or through mobilisation of metals within the ambient mantle wedge. The apparently compatible behaviour of Zn, Cu, and V in the mantle means that these elements may be enriched in arc front magmas relative to back-arc magmas by higher degrees of partial melting and/or melting of more depleted sources.  All base metals behave incompatibly in the magma during crystal fractionation between 48 – 56 wt.% SiO₂. Lead and Cu concentrations, however, begin to level out from ~ 52 wt.% SiO₂ suggesting some subsequent loss to fractionating volatile phases as metal sulfide complexes. Rumble III samples show a decrease in metal concentration (Pb, Cu, V), from melt inclusions to groundmass glasses, suggestive of more significant loss associated with sulfur degassing.  Although other factors such as heat generation, hydrothermal flow, fault systems, and magma venting are key in the development of VMS deposits, this study shows that variations in subduction parameters can significantly affect metal concentrations in arc magmas that may host hydrothermal systems, and hence the amount of metals available to be scavenged into the deposits.</p>


2021 ◽  
Author(s):  
◽  
Jacob Leath

<p>The southern Kermadec Arc – Havre Trough (SKAHT) is an intra-oceanic arc – back-arc system where the Pacific plate is subducting beneath the Australian plate. The Kermadec volcanic arc front consists of 33 volcanic centres, four of which host hydrothermal mineralization (Brothers, Haungaroa, Rumble II West, and Clark) such as volcanogenic massive sulfide (VMS) deposits, which are characterised by high concentrations of base and precious metals (e.g., Au, Cu, Zn, Pb). The sources of these metals are strongly tied to the metal contents within underlying magmatic rocks and associated magmatic systems with which the hydrothermal fluids interact. Understanding the sources, movements, and accumulation of metals associated with porphyry copper and exhalative base metal deposits within a subduction – arc setting remains limited.  This study reports major, trace, and volatile element contents in basaltic groundmass glasses and olivine-hosted melt inclusions from lavas from four locations within the arc – back-arc setting of the SKAHT. The focus is on understanding the controls on base metal (Pb, Cu, Zn, Mo, V) contents in the magmas. The sample locations, Rumble III and Rumble II West volcanoes, and back-arc Basins D and I, form an arc-perpendicular transect extending from arc front into the back-arc. The analysed melt inclusion and groundmass glasses are all basalt to basaltic andesite in composition, with back-arc basin samples more mafic than arc front volcano samples. The magmatic evolution of the melts is primarily controlled by crystal fractionation of olivine + pyroxene + plagioclase. All glasses have undergone variable degassing, indicated by an absence of detectable CO₂ and curvilinear decreases in S contents with increasing SiO₂. Of the volatile phases analysed, only Cl appears unaffected by degassing.  Distinct compositional differences are apparent between arc front and back-arc melts. The arc front magmas formed from higher degrees of melting of a less fertile mantle source and are more enriched in trace elements then the back-arc magmas due to greater additions of slab-derived aqueous fluids to their source. Magmas from a single arc front volcano (Rumble II West) incorporate melts that have tapped variably enriched sources, indicating heterogeneity of the mantle at small scales. Significant variation in mantle composition, however, is also apparent laterally along strike of the arc. Rumble III volcano and Basin I lie on an arc-perpendicular transect south of Rumble II West volcano and Basin D. Their greater enrichment in trace elements and higher concentrations of base metals than Rumble II West and Basin D lavas can be attributed to higher fluxes of subduction derived components.  Base metals (Cu, Zn, Pb, Mo, and V) are variably enriched in the SKAHT melts compared with typical mid-ocean ridge basalts with relative enrichments in the order Pb >> Cu > Mo, V > Zn. All metals appear to be affected by mantle metasomatism related to slab-derived fluids, either directly from slab components introduced to the mantle source (e.g., Pb) or through mobilisation of metals within the ambient mantle wedge. The apparently compatible behaviour of Zn, Cu, and V in the mantle means that these elements may be enriched in arc front magmas relative to back-arc magmas by higher degrees of partial melting and/or melting of more depleted sources.  All base metals behave incompatibly in the magma during crystal fractionation between 48 – 56 wt.% SiO₂. Lead and Cu concentrations, however, begin to level out from ~ 52 wt.% SiO₂ suggesting some subsequent loss to fractionating volatile phases as metal sulfide complexes. Rumble III samples show a decrease in metal concentration (Pb, Cu, V), from melt inclusions to groundmass glasses, suggestive of more significant loss associated with sulfur degassing.  Although other factors such as heat generation, hydrothermal flow, fault systems, and magma venting are key in the development of VMS deposits, this study shows that variations in subduction parameters can significantly affect metal concentrations in arc magmas that may host hydrothermal systems, and hence the amount of metals available to be scavenged into the deposits.</p>


2020 ◽  
Vol 175 (9) ◽  
Author(s):  
Gregory H. Poole ◽  
Anthony I. S. Kemp ◽  
Steffen G. Hagemann ◽  
Marco L. Fiorentini ◽  
Heejin Jeon ◽  
...  
Keyword(s):  

2010 ◽  
pp. 117-132
Author(s):  
Dapeng Zhao ◽  
Sadato Ueki ◽  
Yukihisa Nishizono ◽  
Akira Yamada
Keyword(s):  

2016 ◽  
Vol 323 ◽  
pp. 19-37 ◽  
Author(s):  
Carlos Pallares ◽  
Xavier Quidelleur ◽  
Pierre-Yves Gillot ◽  
Jean-Michel Kluska ◽  
Paul Tchilinguirian ◽  
...  

2021 ◽  
Author(s):  
◽  
Katharine Emma Saunders

<p>The petrogenesis of silicic arc magmas is controversial with end-member models of fractional crystallisation and crustal anatexis having been invoked. A prime example of this is the archetypical continental Taupo Volcanic Zone and the adjacent oceanic Kermadec Arc. Insights into the genesis and timescales of magmatic processes of four continental rhyolitic magmas (Whakamaru, Oruanui, Taupo and Rotorua eruptives) and an oceanic (Healy seamount) rhyodacitic magma are documented through micro-analytical chemical studies of melt inclusions and crystal zonation of plagioclase and quartz. Electron probe microanalysis, laser ablation inductively coupled plasma mass spectrometry and Fourier transform infrared spectroscopy have been used to measure major, trace and volatile element concentrations, respectively, of melt inclusions and crystals. Melt inclusions are high silica (e.g. 74 - 79 wt%) irrespective of arc setting and display a wide range of trace element compositions (e.g. Sr = 17 - 180 ppm). Taupo Volcanic Zone melt inclusions exhibit higher K2O and Ce/Yb relative to Healy melt inclusions reflecting the assimilation of continental lithosphere. Quantitative trace element modelling of melt inclusion compositions: (a) demonstrates that magma genesis occurred through 62 - 76% fractional crystallisation at Healy whereas assimilation of continental lithosphere (greywacke) in addition to 60 - 80% fractional crystallisation is required for the Taupo Volcanic Zone magmas; and (b) suggests the presence of crystal mush bodies beneath silicic magma chambers in both continental and oceanic arc environments. Water concentrations of melt inclusions ranged between 1.4 - 5.1 wt% for the Whakamaru, Taupo and Healy samples. However, the inconsistency in the measured molecular water to hydroxyl concentrations of melt inclusions relative to those determined experimentally for groundmass rhyolitic glasses provide evidence for the degassing of inclusions prior to quenching, by diffusion of hydroxyl groups through the crystal host. Thus, partial pressures of water estimated from the inclusions and inferred depths of the crystallising magma bodies are underestimated. Chemical profiles of mineral zonation, however, indicate a more complex origin of silicic melts than simple fractionation and assimilation. For example, trace element modelling of Whakamaru plagioclase suggests that the three distinct textural plagioclase populations present in Whakamaru samples crystallised from four physiochemically discrete silicic melts. This modelling indicates a strong petrogenetic link between andesitic and silicic magmas from the chemical variation of selected Whakamaru plagioclase crystals possessing high anorthite (45-60 mol %) cores and low anorthite (~ 30 mol %) rim compositions and the interaction of greywacke partial melts. Furthermore, Sr diffusion modelling of core-rim interfaces of the same plagioclase crystals indicate the amalgamation of the magma chamber occurred continuously over the 15,000 years preceding the climactic eruption. Conversely, the major element zonation of Taupo plagioclases implies magma genesis occurred solely through assimilation and fractional crystallisation without the incorporation of evolved crystal mush magmas, indicating a spectrum of magmatic processes are occurring beneath the Taupo Volcanic Zone with each eruption providing only a snapshot of the petrogenesis of the Taupo Volcanic Zone.</p>


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 644
Author(s):  
Inkyeong Moon ◽  
Hyunwoo Lee ◽  
Jonguk Kim ◽  
Jihye Oh ◽  
Donghoon Seoung ◽  
...  

The Dokdo and Ulleung islands (Korea) are volcanic islands in the East Sea (Sea of Japan), formed in the late Cenozoic. These volcanic islands, in the back-arc basin of the Japanese archipelago, provide important information about magma characteristics in the eastern margin of the Eurasian plate. The origin of the Dokdo and Ulleung intraplate volcanism is still controversial, and the role of fluids, especially water, in the magmatism is poorly understood. Here, we comprehensively analyzed the melt inclusions (10–100 m in diameter) hosted in clinopyroxene phenocrysts of trachyte, trachyandesite, and trachybasalt. In particular, we observed Ti-magnetite and amphibole which were crystallized as daughter mineral phases within melt inclusions, suggesting that Ti-magnetite was formed in an oxidized condition due to H2O dissociation and H2 diffusion. The Ti-magnetite exhibited compositional heterogeneities of MgO (average of 8.28 wt %), Al2O3 (average of 8.68 wt %), and TiO2 (average of 8.04 wt %). The positive correlation of TiO2 with Cr2O3 is probably attributed to evolutionary Fe–Ti-rich parent magma. Correspondingly, our results suggested hydrous and oxidized magmatism for the Dokdo and Ulleung volcanic islands.


Geology ◽  
2020 ◽  
Vol 48 (6) ◽  
pp. 620-624
Author(s):  
Vadim S. Kamenetsky ◽  
Michael Zelenski

Abstract Minerals that contain platinum-group elements (PGEs) and occur in some magmatic Cu-Ni sulfide deposits have been ascribed to crystallization from an originally PGE-rich sulfide liquid. The occurrence of PGE-bearing minerals (PGMs) in some sulfide-undersaturated primitive melts has been envisaged and recently reported, whereas direct crystallization of PGMs in sulfide-saturated silicate magmas is seemingly hindered by strong partitioning of PGE into immiscible sulfide melts. In this study, we discovered abundant nanoparticles containing noble metals in association with sulfide melt inclusions entrapped inside primitive olivine phenocrysts (Fo85–92) from the recent basaltic magma of the Tolbachik volcano (Kamchatka arc, Russia). These nuggets occur in swarms on the surface of the sulfide globules and are represented by native metals, sulfides, and alloys of Pd, Pt, Au, Pb, and Bi. The nuggets on different globules can be either Pd- or Pt-rich nuggets, and the compositions are highly variable, even among adjacent nuggets. We argue that the diffusive supply of Pd from the external nuggets can be responsible for significant uptake of Pd (up to 2 wt%) in the sulfide melt. We consider direct crystallization of PGMs in a primitive basaltic melt undergoing sulfide unmixing, and possibly sulfide breakdown due to oxidation, as another mechanism additional to their “classic” origin from the PGE-rich sulfide melt in response to solidification.


2021 ◽  
Vol 176 (9) ◽  
Author(s):  
Nikolai Nekrylov ◽  
Daniil V. Popov ◽  
Pavel Yu. Plechov ◽  
Vasily D. Shcherbakov ◽  
Leonid V. Danyushevsky

Sign in / Sign up

Export Citation Format

Share Document