The mechanism of Re enrichment in arc magmas: evidence from Lau Basin basaltic glasses and primitive melt inclusions

2004 ◽  
Vol 222 (1) ◽  
pp. 101-114 ◽  
Author(s):  
Weidong Sun ◽  
Victoria C Bennett ◽  
Vadim S Kamenetsky
Keyword(s):  
2021 ◽  
Author(s):  
◽  
Katharine Emma Saunders

<p>The petrogenesis of silicic arc magmas is controversial with end-member models of fractional crystallisation and crustal anatexis having been invoked. A prime example of this is the archetypical continental Taupo Volcanic Zone and the adjacent oceanic Kermadec Arc. Insights into the genesis and timescales of magmatic processes of four continental rhyolitic magmas (Whakamaru, Oruanui, Taupo and Rotorua eruptives) and an oceanic (Healy seamount) rhyodacitic magma are documented through micro-analytical chemical studies of melt inclusions and crystal zonation of plagioclase and quartz. Electron probe microanalysis, laser ablation inductively coupled plasma mass spectrometry and Fourier transform infrared spectroscopy have been used to measure major, trace and volatile element concentrations, respectively, of melt inclusions and crystals. Melt inclusions are high silica (e.g. 74 - 79 wt%) irrespective of arc setting and display a wide range of trace element compositions (e.g. Sr = 17 - 180 ppm). Taupo Volcanic Zone melt inclusions exhibit higher K2O and Ce/Yb relative to Healy melt inclusions reflecting the assimilation of continental lithosphere. Quantitative trace element modelling of melt inclusion compositions: (a) demonstrates that magma genesis occurred through 62 - 76% fractional crystallisation at Healy whereas assimilation of continental lithosphere (greywacke) in addition to 60 - 80% fractional crystallisation is required for the Taupo Volcanic Zone magmas; and (b) suggests the presence of crystal mush bodies beneath silicic magma chambers in both continental and oceanic arc environments. Water concentrations of melt inclusions ranged between 1.4 - 5.1 wt% for the Whakamaru, Taupo and Healy samples. However, the inconsistency in the measured molecular water to hydroxyl concentrations of melt inclusions relative to those determined experimentally for groundmass rhyolitic glasses provide evidence for the degassing of inclusions prior to quenching, by diffusion of hydroxyl groups through the crystal host. Thus, partial pressures of water estimated from the inclusions and inferred depths of the crystallising magma bodies are underestimated. Chemical profiles of mineral zonation, however, indicate a more complex origin of silicic melts than simple fractionation and assimilation. For example, trace element modelling of Whakamaru plagioclase suggests that the three distinct textural plagioclase populations present in Whakamaru samples crystallised from four physiochemically discrete silicic melts. This modelling indicates a strong petrogenetic link between andesitic and silicic magmas from the chemical variation of selected Whakamaru plagioclase crystals possessing high anorthite (45-60 mol %) cores and low anorthite (~ 30 mol %) rim compositions and the interaction of greywacke partial melts. Furthermore, Sr diffusion modelling of core-rim interfaces of the same plagioclase crystals indicate the amalgamation of the magma chamber occurred continuously over the 15,000 years preceding the climactic eruption. Conversely, the major element zonation of Taupo plagioclases implies magma genesis occurred solely through assimilation and fractional crystallisation without the incorporation of evolved crystal mush magmas, indicating a spectrum of magmatic processes are occurring beneath the Taupo Volcanic Zone with each eruption providing only a snapshot of the petrogenesis of the Taupo Volcanic Zone.</p>


Geology ◽  
2020 ◽  
Vol 48 (6) ◽  
pp. 620-624
Author(s):  
Vadim S. Kamenetsky ◽  
Michael Zelenski

Abstract Minerals that contain platinum-group elements (PGEs) and occur in some magmatic Cu-Ni sulfide deposits have been ascribed to crystallization from an originally PGE-rich sulfide liquid. The occurrence of PGE-bearing minerals (PGMs) in some sulfide-undersaturated primitive melts has been envisaged and recently reported, whereas direct crystallization of PGMs in sulfide-saturated silicate magmas is seemingly hindered by strong partitioning of PGE into immiscible sulfide melts. In this study, we discovered abundant nanoparticles containing noble metals in association with sulfide melt inclusions entrapped inside primitive olivine phenocrysts (Fo85–92) from the recent basaltic magma of the Tolbachik volcano (Kamchatka arc, Russia). These nuggets occur in swarms on the surface of the sulfide globules and are represented by native metals, sulfides, and alloys of Pd, Pt, Au, Pb, and Bi. The nuggets on different globules can be either Pd- or Pt-rich nuggets, and the compositions are highly variable, even among adjacent nuggets. We argue that the diffusive supply of Pd from the external nuggets can be responsible for significant uptake of Pd (up to 2 wt%) in the sulfide melt. We consider direct crystallization of PGMs in a primitive basaltic melt undergoing sulfide unmixing, and possibly sulfide breakdown due to oxidation, as another mechanism additional to their “classic” origin from the PGE-rich sulfide melt in response to solidification.


Lithos ◽  
2010 ◽  
Vol 118 (1-2) ◽  
pp. 1-16 ◽  
Author(s):  
Teresa Trua ◽  
Roberto Clocchiatti ◽  
Pierre Schiano ◽  
Luisa Ottolini ◽  
Michael Marani

Petrology ◽  
2017 ◽  
Vol 25 (4) ◽  
pp. 419-432 ◽  
Author(s):  
M. V. Portnyagin ◽  
N. L. Mironov ◽  
D. P. Nazarova

2021 ◽  
Author(s):  
◽  
Jacob Leath

<p>The southern Kermadec Arc – Havre Trough (SKAHT) is an intra-oceanic arc – back-arc system where the Pacific plate is subducting beneath the Australian plate. The Kermadec volcanic arc front consists of 33 volcanic centres, four of which host hydrothermal mineralization (Brothers, Haungaroa, Rumble II West, and Clark) such as volcanogenic massive sulfide (VMS) deposits, which are characterised by high concentrations of base and precious metals (e.g., Au, Cu, Zn, Pb). The sources of these metals are strongly tied to the metal contents within underlying magmatic rocks and associated magmatic systems with which the hydrothermal fluids interact. Understanding the sources, movements, and accumulation of metals associated with porphyry copper and exhalative base metal deposits within a subduction – arc setting remains limited.  This study reports major, trace, and volatile element contents in basaltic groundmass glasses and olivine-hosted melt inclusions from lavas from four locations within the arc – back-arc setting of the SKAHT. The focus is on understanding the controls on base metal (Pb, Cu, Zn, Mo, V) contents in the magmas. The sample locations, Rumble III and Rumble II West volcanoes, and back-arc Basins D and I, form an arc-perpendicular transect extending from arc front into the back-arc. The analysed melt inclusion and groundmass glasses are all basalt to basaltic andesite in composition, with back-arc basin samples more mafic than arc front volcano samples. The magmatic evolution of the melts is primarily controlled by crystal fractionation of olivine + pyroxene + plagioclase. All glasses have undergone variable degassing, indicated by an absence of detectable CO₂ and curvilinear decreases in S contents with increasing SiO₂. Of the volatile phases analysed, only Cl appears unaffected by degassing.  Distinct compositional differences are apparent between arc front and back-arc melts. The arc front magmas formed from higher degrees of melting of a less fertile mantle source and are more enriched in trace elements then the back-arc magmas due to greater additions of slab-derived aqueous fluids to their source. Magmas from a single arc front volcano (Rumble II West) incorporate melts that have tapped variably enriched sources, indicating heterogeneity of the mantle at small scales. Significant variation in mantle composition, however, is also apparent laterally along strike of the arc. Rumble III volcano and Basin I lie on an arc-perpendicular transect south of Rumble II West volcano and Basin D. Their greater enrichment in trace elements and higher concentrations of base metals than Rumble II West and Basin D lavas can be attributed to higher fluxes of subduction derived components.  Base metals (Cu, Zn, Pb, Mo, and V) are variably enriched in the SKAHT melts compared with typical mid-ocean ridge basalts with relative enrichments in the order Pb >> Cu > Mo, V > Zn. All metals appear to be affected by mantle metasomatism related to slab-derived fluids, either directly from slab components introduced to the mantle source (e.g., Pb) or through mobilisation of metals within the ambient mantle wedge. The apparently compatible behaviour of Zn, Cu, and V in the mantle means that these elements may be enriched in arc front magmas relative to back-arc magmas by higher degrees of partial melting and/or melting of more depleted sources.  All base metals behave incompatibly in the magma during crystal fractionation between 48 – 56 wt.% SiO₂. Lead and Cu concentrations, however, begin to level out from ~ 52 wt.% SiO₂ suggesting some subsequent loss to fractionating volatile phases as metal sulfide complexes. Rumble III samples show a decrease in metal concentration (Pb, Cu, V), from melt inclusions to groundmass glasses, suggestive of more significant loss associated with sulfur degassing.  Although other factors such as heat generation, hydrothermal flow, fault systems, and magma venting are key in the development of VMS deposits, this study shows that variations in subduction parameters can significantly affect metal concentrations in arc magmas that may host hydrothermal systems, and hence the amount of metals available to be scavenged into the deposits.</p>


2020 ◽  
Author(s):  
Horst Marschall ◽  
Matthew Jackson

&lt;p&gt;Boron is a distinctly crustal element in that it is strongly enriched in the surface reservoirs, such as continental crust, seawater, sediments, serpentinites and altered oceanic crust, relative to the mantle. These B-enriched reservoirs are also isotopically very distinct from the regular depleted upper mantle (d&lt;sup&gt;11&lt;/sup&gt;B = -7.1&amp;#160;&amp;#177;0.9&amp;#160;&amp;#8240; [10.1016/j.gca.2017.03.028]). This has encouraged the idea that boron could be an ideal tracer for subducted surface materials in the deep mantle in the form of isotopically anomalous recycled components in ocean island basalts (OIB) and enriched MORB. Yet, the potential of a geochemical tracer of this type is weakened by its extraction from the slab at the onset of subduction by dewatering and metamorphic dehydration, because this process depletes the recycled components in fluid-mobile elements. As such, this &amp;#8220;subduction barrier&amp;#8221; diminishes the deep recycling efficiency of incompatible, fluid-mobile tracers like B.&lt;/p&gt;&lt;p&gt;This study focuses on the B abundances and B isotopic compositions of glasses and melt inclusions that show low Cl/K ratios and are thought to represent the uncontaminated mantle signal from the HIMU (Tuvalu and Mangaia), EM1 (Pitcairn) and EM2 (Samoa) sources. Strikingly, all samples are depleted in boron by a factor of approximately 1.5 to 4 relative to non-fluid-mobile elements of similar incompatibility (e.g. LREE, P, Be). This negative boron anomaly is ubiquitous in OIB and is consistent with the results of previous studies [10.1016/0016-7037(95)00402-5; 10.1016/j.epsl.2018.12.005]. It also mirrors their characteristic negative Pb anomaly. These anomalies show that the mantle sources of OIB are depleted in B (and Pb) relative to non-fluid-mobile elements of similar incompatibility and relative to the MORB-source mantle. This is best explained by the presence in the OIB sources of recycled components that are enriched in all incompatible elements except for the fluid-mobile B (and Pb). The fluid mobile elements must have been preferentially extracted in the subduction barrier and returned to the surface on the short path via arc magmas. Arc magmas consistently show a general enrichment in isotopically heavy boron [10.1007/978-3-319-64666-4_9] with positive B anomalies.&lt;/p&gt;&lt;p&gt;Despite of the low recycling efficiency of boron into the convecting mantle, OIB still have B isotope signatures that are distinct from those of MORB. Previous studies have reported OIB signatures slightly lighter than MORB and the primitive mantle [10.1016/j.epsl.2018.12.005]. However, our study exclusively finds isotopically heavy B with a range in d&lt;sup&gt;11&lt;/sup&gt;B from MORB-like values (-8.6 &amp;#177;2.0&amp;#160;&amp;#8240;) up to -2.5&amp;#160;&amp;#177;1.5&amp;#8240; for EM1 and HIMU lavas. The total OIB range is small but significant, and is consistent with the deep recycling of material that is strongly depleted in boron, but isotopically distinct (with isotopically heavy B in the case of our EM1 and HIMU samples). The B depletion combined with the B isotopic anomaly in OIB shows that B is efficiently (but not quantitatively) removed from the slab during subduction, and that isotopically distinct mantle domains are thus produced. The subduction barrier for boron increases its strength as a tracer in arcs, but it diminishes its potential as a tracer of deep mantle recycling.&lt;/p&gt;


2019 ◽  
Vol 104 (7) ◽  
pp. 936-948 ◽  
Author(s):  
Maxim Gavrilenko ◽  
Michael Krawczynski ◽  
Philipp Ruprecht ◽  
Wenlu Li ◽  
Jeffrey G. Catalano

AbstractHere we present a study on the quenchability of hydrous mafic melts. We show via hydrothermal experiments that the ability to quench a mafic hydrous melt to a homogeneous glass at cooling rates relevant to natural samples has a limit of no more than 9 ± 1 wt% of dissolved H2O in the melt. We performed supra-liquidus experiments on a mafic starting composition at 1–1.5 GPa spanning H2O-undersaturated to H2O-saturated conditions (from ~1 to ~21 wt%). After dissolving H2O and equilibrating, the hydrous mafic melt experiments were quenched. Quenching rates of 20 to 90 K/s at the glass transition temperature were achieved, and some experiments were allowed to decompress from thermal contraction while others were held at an isobaric condition during quench. We found that quenching of a hydrous melt to a homogeneous glass at quench rates comparable to natural conditions is possible at water contents up to 6 wt%. Melts containing 6–9 wt% of H2O are partially quenched to a glass, and always contain significant fractions of quench crystals and glass alteration/devitrification products. Experiments with water contents greater than 9 wt% have no optically clear glass after quench and result in fine-grained mixtures of alteration/devitrification products (minerals and amorphous materials). Our limit of 9 ± 1 wt% agrees well with the maximum of dissolved H2O contents found in natural glassy melt inclusions (8.5 wt% H2O). Other techniques for estimating pre-eruptive dissolved H2O content using petrologic and geochemical modeling have been used to argue that some arc magmas are as hydrous as 16 wt% H2O. Thus, our results raise the question of whether the observed record of glassy melt inclusions has an upper limit that is partially controlled by the quenching process. This potentially leads to underestimating the maximum amount of H2O recycled at arcs when results from glassy melt inclusions are predominantly used to estimate water fluxes from the mantle.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Michael Zelenski ◽  
Vadim S. Kamenetsky ◽  
Nikolai Nekrylov ◽  
Alkiviadis Kontonikas-Charos

Sulfur contents in 98.5% of melt inclusions (MI) from calc-alkaline subduction basalts do not exceed 4000 ppm, whereas experimentally established limits of sulfur solubility in basaltic melts with high fO2 (characteristic of subduction zones, e.g., QFM + 2) surpass 14,000 ppm. Here we show that primitive (Mg# 62-64) subduction melts may contain high sulfur, approaching the experimental limit of sulfur solubility. Up to 11,700 ppm S was measured in olivine-hosted MI from primitive arc basalt from the 1941 eruption of the Tolbachik volcano, Kamchatka. These MI often contain magmatic sulfide globules (occasionally enriched in Cu, Ni, and platinum-group elements) and anhydrite enclosed within a brown, oxidized glass. We conclude that the ubiquitous low sulfur contents in MI may originate either from insufficient availability of sulfur in the magma generation zone or early magma degassing prior to inclusion entrapment. Our findings extend the measured range of sulfur concentrations in primitive calc-alkaline basaltic melts and demonstrate that no fundamental limit of 4000 ppm S exists for relatively oxidized subduction basalts, where the maximum sulfur content may approach the solubility limit determined by crystallization of magmatic anhydrite.


Sign in / Sign up

Export Citation Format

Share Document