High-pressure mafic oceanic rocks from the Makbal Complex, Tianshan Mountains (Kazakhstan & Kyrgyzstan): Implications for the metamorphic evolution of a fossil subduction zone

Lithos ◽  
2013 ◽  
Vol 177 ◽  
pp. 207-225 ◽  
Author(s):  
Melanie Meyer ◽  
Reiner Klemd ◽  
Dmitry Konopelko
Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 411
Author(s):  
Paola Tartarotti ◽  
Silvana Martin ◽  
Andrea Festa ◽  
Gianni Balestro

Ophiolites of the Alpine belt derive from the closure of the Mesozoic Tethys Ocean that was interposed between the palaeo-Europe and palaeo-Adria continental plates. The Alpine orogeny has intensely reworked the oceanic rocks into metaophiolites with various metamorphic imprints. In the Western Alps, metaophiolites and continental-derived units are distributed within two paired bands: An inner band where Alpine subduction-related high-pressure (HP) metamorphism is preserved, and an outer band where blueschist to greenschist facies recrystallisation due to the decompression path prevails. The metaophiolites of the inner band are hugely important not just because they provide records of the prograde tectonic and metamorphic evolution of the Western Alps, but also because they retain the signature of the intra-oceanic tectono-sedimentary evolution. Lithostratigraphic and petrographic criteria applied to metasediments associated with HP metaophiolites reveal the occurrence of distinct tectono-stratigraphic successions including quartzites with marbles, chaotic rock units, and layered calc schists. These successions, although sliced, deformed, and superposed in complex ways during the orogenic stage, preserve remnants of their primary depositional setting constraining the pre-orogenic evolution of the Jurassic Tethys Ocean.


2012 ◽  
Vol 4 (1) ◽  
pp. 745-781 ◽  
Author(s):  
C. J. Warren

Abstract. The exhumation of high and ultra-high pressure rocks is ubiquitous in Phanerozoic orogens created during continental collisions, and is common in many ocean-ocean and ocean-continent subduction zone environments. Three different tectonic environments have previously been reported, which exhume deeply buried material by different mechanisms and at different rates. However it is becoming increasingly clear that no single mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. In order for buoyant continental crust to subduct, it must remain attached to a stronger and denser substrate, but in order to exhume, it must detach (and therefore at least locally weaken) and be initially buoyant. Denser oceanic crust subducts more readily than more buoyant continental crust but exhumation must be assisted by entrainment within more buoyant and weak material such as serpentinite or driven by the exhumation of structurally lower continental crustal material. Weakening mechanisms responsible for the detachment of crust at depth include strain, hydration, melting, grain size reduction and the development of foliation. These may act locally or may act on the bulk of the subducted material. Metamorphic reactions, metastability and the composition of the subducted crust all affect buoyancy and overall strength. Subduction zones change in style both in time and space, and exhumation mechanisms change to reflect the tectonic style and overall force regime within the subduction zone. Exhumation events may be transient and occur only once in a particular subduction zone or orogen, or may be more continuous or occur multiple times.


2017 ◽  
Vol 60 (10) ◽  
pp. 1817-1825 ◽  
Author(s):  
RenBiao Tao ◽  
LiFei Zhang ◽  
Vincenzo Stagno ◽  
Xu Chu ◽  
Xi Liu

Sign in / Sign up

Export Citation Format

Share Document