scholarly journals Up the down escalator: the exhumation of (ultra)-high pressure terranes during on-going subduction

2012 ◽  
Vol 4 (1) ◽  
pp. 745-781 ◽  
Author(s):  
C. J. Warren

Abstract. The exhumation of high and ultra-high pressure rocks is ubiquitous in Phanerozoic orogens created during continental collisions, and is common in many ocean-ocean and ocean-continent subduction zone environments. Three different tectonic environments have previously been reported, which exhume deeply buried material by different mechanisms and at different rates. However it is becoming increasingly clear that no single mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. In order for buoyant continental crust to subduct, it must remain attached to a stronger and denser substrate, but in order to exhume, it must detach (and therefore at least locally weaken) and be initially buoyant. Denser oceanic crust subducts more readily than more buoyant continental crust but exhumation must be assisted by entrainment within more buoyant and weak material such as serpentinite or driven by the exhumation of structurally lower continental crustal material. Weakening mechanisms responsible for the detachment of crust at depth include strain, hydration, melting, grain size reduction and the development of foliation. These may act locally or may act on the bulk of the subducted material. Metamorphic reactions, metastability and the composition of the subducted crust all affect buoyancy and overall strength. Subduction zones change in style both in time and space, and exhumation mechanisms change to reflect the tectonic style and overall force regime within the subduction zone. Exhumation events may be transient and occur only once in a particular subduction zone or orogen, or may be more continuous or occur multiple times.

Solid Earth ◽  
2013 ◽  
Vol 4 (1) ◽  
pp. 75-92 ◽  
Author(s):  
C. J. Warren

Abstract. The formation and exhumation of high and ultra-high-pressure, (U)HP, rocks of crustal origin appears to be ubiquitous during Phanerozoic plate subduction and continental collision events. Exhumation of (U)HP material has been shown in some orogens to have occurred only once, during a single short-lived event; in other cases exhumation appears to have occurred multiple discrete times or during a single, long-lived, protracted event. It is becoming increasingly clear that no single exhumation mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. Subduction zone style and internal force balance change in both time and space, responding to changes in width, steepness, composition of subducting material and velocity of subduction. In order for continental crust, which is relatively buoyant compared to the mantle even when metamorphosed to (U)HP assemblages, to be subducted to (U)HP conditions, it must remain attached to a stronger and denser substrate. Buoyancy and external tectonic forces drive exhumation, although the changing spatial and temporal dominance of different driving forces still remains unclear. Exhumation may involve whole-scale detachment of the terrane from the subducting slab followed by exhumation within a subduction channel (perhaps during continued subduction) or a reversal in motion of the entire plate (eduction) following the removal of a lower part of the subducting slab. Weakening mechanisms that may be responsible for the detachment of deeply subducted crust from its stronger, denser substrate include strain weakening, hydration, melting, grain size reduction and the development of foliation. These may act locally to form narrow high-strain shear zones separating stronger, less-strained crust or may act on the bulk of the subducted material, allowing whole-scale flow. Metamorphic reactions, metastability and the composition of the subducted crust all affect buoyancy and overall strength. Future research directions include identifying temporal and spatial changes in exhumation mechanisms within different tectonic environments, and determining the factors that influence those changes.


Elements ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Lucie Tajčmanová ◽  
Paola Manzotti ◽  
Matteo Alvaro

The mechanisms attending the burial of crustal material and its exhumation before and during the Alpine orogeny are controversial. New mechanical models propose local pressure perturbations deviating from lithostatic pressure as a possible mechanism for creating (ultra-)high-pressure rocks in the Alps. These models challenge the assumption that metamorphic pressure can be used as a measure of depth, in this case implying deep subduction of metamorphic rocks beneath the Alpine orogen. We summarize petro-logical, geochronological and structural data to assess two fundamentally distinct mechanisms of forming (ultra-)high-pressure rocks: deep subduction; or anomalous, non-lithostatic pressure variation. Furthermore, we explore mineral-inclusion barometry to assess the relationship between pressure and depth in metamorphic rocks.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Timothy Chapman ◽  
Geoffrey L. Clarke ◽  
Nathan R. Daczko

AbstractEclogite facies metamorphism of the lithosphere forms dense mineral assemblages at high- (1.6–2.4 GPa) to ultra-high-pressure (>2.4–12 GPa: UHP) conditions that drive slab-pull forces during its subduction to lower mantle conditions. The relative densities of mantle and lithospheric components places theoretical limits for the re-exposure, and peak conditions expected, of subducted lithosphere. Exposed eclogite terranes dominated by rock denser than the upper mantle are problematic, as are interpretations of UHP conditions in buoyant rock types. Their subduction and exposure require processes that overcame predicted buoyancy forces. Phase equilibria modelling indicates that depths of 50–60 km (P = 1.4–1.8 GPa) and 85–160 km (P = 2.6–5 GPa) present thresholds for pull force in end-member oceanic and continental lithosphere, respectively. The point of no-return for subducted silicic crustal rocks is between 160 and 260 km (P = 5.5–9 GPa), limiting the likelihood of stishovite–wadeite–K-hollandite-bearing assemblages being preserved in equilibrated assemblages. The subduction of buoyant continental crust requires its anchoring to denser mafic and ultramafic lithosphere in ratios below 1:3 for the continental crust to reach depths of UHP conditions (85–160 km), and above 2:3 for it to reach extreme depths (>160 km). The buoyant escape of continental crust following its detachment from an anchored situation could carry minor proportions of other rocks that are denser than the upper mantle. However, instances of rocks returned from well-beyond these limits require exceptional exhumation dynamics, plausibly coupled with the effects of incomplete metamorphism to retain less dense low-P phases.


2020 ◽  
Author(s):  
Jungjin Lee ◽  
Haemyeong Jung ◽  
Reiner Klemd ◽  
Matthew Tarling ◽  
Dmitry Konopelko

<p>Strong seismic anisotropy is generally observed in subduction zones. Lattice preferred orientation (LPO) of olivine and elastically anisotropic hydrous minerals has been considered to be an important factor causing anomalous seismic anisotropy. For the first time, we report on measured LPOs of polycrystalline talc. The study comprises subduction-related ultra-high-pressure metamorphic schists from the Makbal Complex in Kyrgyzstan-Kazakhstan and amphibolite-facies metasomatic schists from the Valla Field Block in Unst, Scotland. The here studied talc revealed a strong alignment of [001] axes (sub)normal to the foliation and a girdle distribution of [100] axes and (010) poles (sub)parallel to the foliation. The LPOs of polycrystalline talc produced a significant P–wave anisotropy (AVp = 72%) and a high S–wave anisotropy (AVs = 24%). The results imply that the LPO of talc influence both the strong trench-parallel azimuthal anisotropy and positive/negative radial anisotropy of P–waves, and the trench-parallel seismic anisotropy of S–waves in subduction zones.</p>


2015 ◽  
Vol 112 (5) ◽  
pp. 1287-1291 ◽  
Author(s):  
David Bercovici ◽  
Gerald Schubert ◽  
Yanick Ricard

A simple model for necking and detachment of subducting slabs is developed to include the coupling between grain-sensitive rheology and grain-size evolution with damage. Necking is triggered by thickened buoyant crust entrained into a subduction zone, in which case grain damage accelerates necking and allows for relatively rapid slab detachment, i.e., within 1 My, depending on the size of the crustal plug. Thick continental crustal plugs can cause rapid necking while smaller plugs characteristic of ocean plateaux cause slower necking; oceanic lithosphere with normal or slightly thickened crust subducts without necking. The model potentially explains how large plateaux or continental crust drawn into subduction zones can cause slab loss and rapid changes in plate motion and/or induce abrupt continental rebound.


2019 ◽  
Vol 60 (6) ◽  
pp. 1229-1262 ◽  
Author(s):  
Mattia Gilio ◽  
Marco Scambelluri ◽  
Samuele Agostini ◽  
Marguerite Godard ◽  
Daniel Peters ◽  
...  

AbstractIn the Western Alps, the ophiolitic Zermatt–Saas Zone (ZSZ) and the Lago di Cignana Unit (LCU) record oceanic lithosphere subduction to high (540°C, 2·3GPa) and ultra-high pressure (600°C, 3·2GPa), respectively. The top of the Zermatt–Saas Zone in contact with the Lago di Cignana Unit consists of olivine + Ti-clinohumite-bearing serpentinites (the Cignana serpentinite) hosting olivine + Ti-clinohumite veins and dykelets of olivine + Ti-chondrodite + Ti-clinohumite. The composition of this serpentinite reveals a refertilized oceanic mantle peridotite protolith that became subsequently enriched in fluid-mobile elements (FME) during oceanic serpentinization. The olivine + Ti-clinohumite veins in the Cignana serpentinite display Rare Earth Element (REE) and FME compositions quite similar to the host-rock, which suggests closed-system dehydration of this serpentinite during subduction. The Ti-chondrodite-bearing dykelets are richer in REE and FME than the host-rock and the dehydration olivine + Ti-clinohumite veins: their Nd composition points to a mafic protolith, successively overprinted by oceanic metasomatism and by subduction zone recrystallization. These dykelets are comparable in composition to eclogites within the ultra-high pressure LCU that derive from subducted oceanic mafic crust. Different from the LCU, serpentinites from the core domains of the ZSZ display REE compositions indicating a depleted mantle protolith. The oceanic serpentinization of these rocks led to an increase in FME and to seawater-like Sr isotope compositions. The serpentinites sampled at increasing distance from the ultra-high pressure LCU reveal different mantle protoliths, still preserve an oceanic geochemical imprint and contain mafic dykelets affected by oceanic metasomatism. The subduction zone history of these rocks thus occurred under relatively closed system conditions, the only possible change during subduction being an enrichment in As and Sb recorded by the serpentinites closer to the crustal LCU. The ZSZ and Cignana serpentinites thus likely evolved in a slab setting and were weakly exposed to interaction with slab-derived fluids characteristic of plate interface settings. Our data suggest two possible scenarios for the evolution of the studied ZSZ and Cignana serpentinites. They are either part of a coherent ophiolite unit whose initial lithospheric mantle was variably affected by depletion and re-fertilization processes, or they belong to separate tectonic slices derived from two different oceanic mantle sections. In the Cignana serpentinite atop the ZSZ, the presence of Ti-chondrodite dykelets similar in composition to the LCU eclogites suggests these two domains were closely associated in the oceanic lithosphere and shared the same evolution to ultra-high pressure conditions during Alpine subduction.


Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 499 ◽  
Author(s):  
Elena Sizova ◽  
Christoph Hauzenberger ◽  
Harald Fritz ◽  
Shah Wali Faryad ◽  
Taras Gerya

Some (ultra)high-pressure metamorphic rocks that formed during continental collision preserve relict minerals, indicating a two-stage evolution: first, subduction to mantle depths and exhumation to the lower-crustal level (with simultaneous cooling), followed by intensive heating that can be characterized by a β-shaped pressure–temperature–time (P–T–t) path. Based on a two-dimensional (2D) coupled petrological–thermomechanical tectono-magmatic numerical model, we propose a possible sequence of tectonic stages that could lead to these overprinting metamorphic events along an orogenic β-shaped P–T–t path: the subduction and exhumation of continental crust, followed by slab retreat that leads to extension and subsequent asthenospheric upwelling. During the last stage, the exhumed crustal material at the crust–mantle boundary undergoes heating from the underlying hot asthenospheric mantle. This slab rollback scenario is further compared numerically with the classical continental collision scenario associated with slab breakoff, which is often used to explain the late heating impulse in the collisional orogens. The mantle upwelling occurring in the experiments with slab breakoff, which is responsible for the heating of the exhumed crustal material, is not related to the slab breakoff but can be caused either by slab bending before slab breakoff or by post-breakoff exhumation of the subducted crust. Our numerical modeling predictions align well with a variety of orogenic P–T–t paths that have been reported from many Phanerozoic collisional orogens, such as the Variscan Bohemian Massif, the Triassic Dabie Shan, the Cenozoic Northwest Himalaya, and some metamorphic complexes in the Alps.


Sign in / Sign up

Export Citation Format

Share Document