Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: A Sr–Nd–Hf–O isotopic study from the Paleozoic Tongbai orogen, central China

Lithos ◽  
2017 ◽  
Vol 282-283 ◽  
pp. 298-315 ◽  
Author(s):  
Hao Wang ◽  
Yuan-Bao Wu ◽  
Jin-Hui Yang ◽  
Zheng-Wei Qin ◽  
Rui-Chun Duan ◽  
...  
2012 ◽  
Vol 4 (1) ◽  
pp. 745-781 ◽  
Author(s):  
C. J. Warren

Abstract. The exhumation of high and ultra-high pressure rocks is ubiquitous in Phanerozoic orogens created during continental collisions, and is common in many ocean-ocean and ocean-continent subduction zone environments. Three different tectonic environments have previously been reported, which exhume deeply buried material by different mechanisms and at different rates. However it is becoming increasingly clear that no single mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. In order for buoyant continental crust to subduct, it must remain attached to a stronger and denser substrate, but in order to exhume, it must detach (and therefore at least locally weaken) and be initially buoyant. Denser oceanic crust subducts more readily than more buoyant continental crust but exhumation must be assisted by entrainment within more buoyant and weak material such as serpentinite or driven by the exhumation of structurally lower continental crustal material. Weakening mechanisms responsible for the detachment of crust at depth include strain, hydration, melting, grain size reduction and the development of foliation. These may act locally or may act on the bulk of the subducted material. Metamorphic reactions, metastability and the composition of the subducted crust all affect buoyancy and overall strength. Subduction zones change in style both in time and space, and exhumation mechanisms change to reflect the tectonic style and overall force regime within the subduction zone. Exhumation events may be transient and occur only once in a particular subduction zone or orogen, or may be more continuous or occur multiple times.


2000 ◽  
Vol 105 (B6) ◽  
pp. 13303-13338 ◽  
Author(s):  
Lothar Ratschbacher ◽  
Bradley R. Hacker ◽  
Laura E. Webb ◽  
Michael McWilliams ◽  
Trevor Ireland ◽  
...  

2000 ◽  
Vol 105 (B6) ◽  
pp. 13339-13364 ◽  
Author(s):  
Bradley R. Hacker ◽  
Lothar Ratschbacher ◽  
Laura Webb ◽  
Michael O. McWilliams ◽  
Trevor Ireland ◽  
...  

2008 ◽  
Vol 255 (1-2) ◽  
pp. 1-13 ◽  
Author(s):  
Fang Huang ◽  
Shuguang Li ◽  
Feng Dong ◽  
Yongsheng He ◽  
Fukun Chen

Lithos ◽  
2007 ◽  
Vol 96 (1-2) ◽  
pp. 151-169 ◽  
Author(s):  
Fang Huang ◽  
Shuguang Li ◽  
Feng Dong ◽  
Qiuli Li ◽  
Fukun Chen ◽  
...  

1998 ◽  
Vol 43 (S1) ◽  
pp. 75-75
Author(s):  
S. Li ◽  
Y. Nie ◽  
D. Liu ◽  
S. R. Hart ◽  
Z. Zhang ◽  
...  

1987 ◽  
Vol 24 (3) ◽  
pp. 396-406 ◽  
Author(s):  
C. Chauvel ◽  
N. T. Arndt ◽  
S. Kielinzcuk ◽  
A. Thom

A Nd isotopic study was carried out on 1.9−1.8 Ga rocks from two parts of the Trans-Hudson Orogen in northern Canada. The first part is the Reindeer Lake Zone in the Churchill Province in Saskatchewan, where a variety of volcanic, granitoid, and sedimentary rocks are preserved in several lithotectonic belts that border a reworked Archean craton to the northwest. The second area comprises the Ottawa and Belcher islands, in Hudson Bay, and the Fox River volcanics, in Manitoba. These form part of the Circum-Superior Belt, a band of basaltic volcanics and sedimentary rocks that overlies the Archean Superior craton.From U–Pb zircon ages, Pb–Pb ages, and Sm–Nd ages, Nd initial isotopic compositions were calculated for all analyzed samples. In the Saskatchewan terrains, we obtained a large range of εNd values, from +5 to −8. The highest values (+4 to +5) come from two volcanic-dominated belts (Flin Flon and Western la Ronge), lower values (~+2) characterize intervening sediment-dominated domains (Eastern La Ronge, Glennie Lake, and Kisseynew), and still lower values (−1 to −4) were found in migmatitic and granitoid belts adjacent to the reworked Archean craton in the northwest. Each lithotectonic belt has its own characteristic, restricted range of εNd values, and, with few exceptions, there is no correlation between εNd and rock type; i.e., in individual belts, volcanics, granites, and sediments have very similar εNd values.In the Circum-Superior Belt, three lava flows from the Ottawa Islands have εNd values ranging from +4.5 to 0, and samples from the Belcher Islands have values ranging from +3.5 to −9.These results are explained by mixing between mantle-derived rocks and variable amounts of Archean continental crustal rocks. Assuming that 1.9 Ga ago the mantle had an εNd value of +5 and Archean crust had an εNd value of −12, we calculate proportions of Archean crustal material in Trans-Hudson rocks ranging from ~2 to 35 %, increasing systematically toward the Archean platform. The mean Archean component is about 8%: this area of Proterozoic continental crust is clearly dominated by material derived directly from the mantle.The similarity between the εNd values of sediments, granites, and volcanics in the Trans-Hudson Orogen suggests that sedimentary processes played a dominant role in transporting Archean detritus from eroding Archean continental areas into basins, where it mixed with mantle-derived volcanic material and melted to form granitoids.


Sign in / Sign up

Export Citation Format

Share Document