Analysis of chemical composition of nectars and honeys from Citrus by extractive electrospray ionization high resolution mass spectrometry

LWT ◽  
2020 ◽  
Vol 131 ◽  
pp. 109748 ◽  
Author(s):  
Yuanyuan Gao ◽  
Ahui Xue ◽  
Xiang Li ◽  
Xueyong Huang ◽  
Fangjian Ning ◽  
...  
2012 ◽  
Vol 9 (3) ◽  
pp. 298 ◽  
Author(s):  
Angela G. Rincón ◽  
Ana I. Calvo ◽  
Mathias Dietzel ◽  
Markus Kalberer

Environmental contextUnderstanding the molecular composition and chemical transformations of organic aerosols during atmospheric aging is a major challenge in atmospheric chemistry. Ultra-high resolution mass spectrometry can provide detailed information on the molecular composition of organic aerosols. Aerosol samples collected in summer and winter at an urban site are characterised and compared in detail with respect to the elemental composition of their components, especially nitrogen- and sulfur-containing compounds, and are discussed with respect to atmospheric formation processes. AbstractOrganic compounds are major constituents of atmospheric aerosol particles. The understanding of their chemical composition, their properties and reactivity are important for assessing aerosol effects upon both global climate change and human health. The composition of organic aerosols is poorly understood, mainly due to its highly complex chemical composition of several thousand compounds. There is currently no analytical technique available covering a wide enough chemical space to characterise this large number of organic compounds. In recent years ultra-high resolution mass spectrometry has been increasingly used to explore the chemical complexity in organic aerosols from laboratory and ambient samples. In the present study ambient particles <1 µm were collected at an urban site in Cambridge, UK, from August to December 2009. The water-soluble organic fraction of the filters was separated from inorganic ions following a procedure developed for humic-like substance isolation. Ultra-high resolution mass spectrometry analyses were performed in negative and positive polarity. Data in the mass range of m/z 50–350 were analysed for their elemental composition. Summer samples generally contained more components than winter samples. The large number of compounds was subdivided into groups according to their elemental composition. Up to 80 % of the peaks contain nitrogen and sulfur functional groups and only ~20 % of the compounds contain only C, H and O atoms. In summer the fraction of compounds with oxidised nitrogen and sulfur groups increases compared with winter indicating a photo-chemical formation route of these multifunctional compounds. In addition to oxidised nitrogen compounds a large number of amines was identified.


2017 ◽  
Author(s):  
Julia Montoya ◽  
Jeremy R. Horne ◽  
Mallory L. Hinks ◽  
Lauren T. Fleming ◽  
Veronique Perraud ◽  
...  

Abstract. Indole is a heterocyclic compound emitted by various plant species under stressed conditions or during flowering events. The formation, optical properties, and chemical composition of secondary organic aerosol (SOA) formed by low-NOx photooxidation of indole were investigated. The SOA yield (1.1 ± 0.3) was estimated from measuring the particle mass concentration with a scanning mobility particle sizer (SMPS) and correcting it for the wall loss effects. The SOA particles were collected on filters and analysed offline with UV-Vis spectrophotometry to measure the mass absorption coefficient (MAC) of the bulk sample. The samples were visibly brown and had MAC values of ~7 m2/g at λ = 300 nm and ~2 m2/g at λ = 400 nm, comparable to strongly absorbing brown carbon emitted from biomass burning. The chemical composition of SOA was examined with several mass spectrometry methods. The direct analysis in real time mass spectrometry (DART-MS) and nanospray desorption electrospray high resolution mass spectrometry (nano-DESI-HRMS) were used to provide information about the overall distribution of SOA compounds. High performance liquid chromatography, coupled to photodiode array spectrophotometry and high resolution mass spectrometry (HPLC-PDA-HRMS) was used to identify chromophoric compounds. Indole derivatives, such as tryptanthrin, indirubin, indigo dye, and indoxyl red were found to contribute significantly to the visible absorption spectrum of indole SOA. The potential effect of indole SOA on air quality was explored with the airshed model, which found elevated concentrations of indole SOA during the afternoon hours contributing considerably to the total organic aerosol under selected scenarios. Because of its high MAC values, indole SOA can contribute to decreased visibility and poor air quality.


Sign in / Sign up

Export Citation Format

Share Document