scholarly journals Material cycling in coastal waters and the role of the Kiritappu Wetland in Hamanaka, Hokkaido: An analysis using the surf clam (Pseudocardium sachalinense) as an environmental indicator

2018 ◽  
Vol 205 ◽  
pp. 81-89
Author(s):  
X. Ba ◽  
N. Kouchi ◽  
K. Watanabe ◽  
M. Nakaoka ◽  
M. Fujii
1993 ◽  
Vol 27 (12) ◽  
pp. 223-226
Author(s):  
J.-F. Guillaud ◽  
M. Pommepuy ◽  
E. Dupray ◽  
J.-C. Salomon ◽  
B. Thouvenin

The aim of this paper is to present some results of bacterial studies which were developed by IFREMER in coastal discharge areas of urban wastewaters; they are focused on the determination of bacterial inputs by wastewater treatment plants, the role of environmental factors on the enteric bacteria survival in the coastal zone, and the modelling of bacteria transport and disappearance in order to provide useful management information for minimizing faecal pollution in the coastal zone.


Marine Policy ◽  
2020 ◽  
Vol 118 ◽  
pp. 103399
Author(s):  
Nwamaka Okeke-Ogbuafor ◽  
Tim Gray ◽  
Selina Marguerite Stead
Keyword(s):  

Author(s):  
Anurag Gupta ◽  
Syed Moosa Ali ◽  
Aswathy Vijaya Krishna ◽  
Arvind Sahay ◽  
Mini Raman

2006 ◽  
Vol 3 (3) ◽  
pp. 271-280 ◽  
Author(s):  
T. Jickells

Abstract. This contribution to the Spot-On volume considers the magnitude and composition of atmospheric nitrogen inputs to the oceans and then goes on to consider the impacts of these inputs. Effects in open ocean and coastal areas are probably different. Offshore atmospheric inputs may produce a small enhancement of overall ocean productivity and hence CO2 drawdown. In coastal waters atmospheric inputs contribute significantly to overall eutrophication pressure, but evidence that they trigger algal blooms is limited. Management of atmospheric inputs to coastal waters to mitigate eutrophication pressures requires that emissions be managed over a wide area reflecting the efficient long range transport of atmospheric nitrogen. Strategies for management of oxidised and reduced nitrogen deposition will be different reflecting their different rates of deposition.


1967 ◽  
Vol 50 (3) ◽  
pp. 759-778 ◽  
Author(s):  
DeForest Mellon

Compound postsynaptic potentials, comprising graded excitatory-inhibitory sequences, are the characteristic mode of response to afferent input exhibited by a population of cells in the visceroparietal ganglion of Spisula. Experimentally induced interaction between the phases of the response indicates that the observed sequential invasion represents differences in individual component latencies, rather than the physiological resultant of two separate processes having simultaneous onset but different rates of decay. Excitation is depressed by changes in membrane conductance throughout the duration of the inhibitory phase; moreover, since similar pathways from the periphery initiate both phases, excitatory events are limited to a duration roughly equal in length to the latency for the inhibition. Within this interval repetitive volleys can evoke summation of excitatory events. The inhibitory mechanism is temporally stable, however, and dominates the membrane during repetitive trains of volleys at 1 to 100 per sec. Artificially generated increases in the membrane potential decrease the IPSP while increasing the amplitude of the EPSP. Thus, both phases of the compound response appear to result from events occurring at chemically transmitting synaptic loci. Evidence is presented that these events are driven via collaterals of the same afferent fibers. The behavioral role of these response sequences is uncertain. Analogies, in terms of some observed reflex activity in these clams, appear to exist but presently lack experimental verification.


Author(s):  
E. D. Pilling ◽  
R. J. G. Leakey ◽  
P. H. Burkill

The ciliate list for Plymouth waters has been extended by 14 species using modern taxonomic techniques. Ciliates were abundant in the plankton where they formed a significant food resource. Their community biomass and production was estimated to average 12 µ C 1 and 9 µ C 1 respectively during the summer. The ciliate community was dominated by a diverse assemblage of aloricate choreotrichs, suggesting a complex trophic role for this protozoan group.Ciliate protozoans are ubiquitous and often abundant in marine waters where they are frequently considered to play an important ecological role in trophic flux and nutrient cycling within the plankton (Fenchel, 1987). In spite of this, however, their ecological role in British coastal waters is poorly understood. In Plymouth waters, for instance, there has been only one previous study of marine pelagic Protozoa (Lackey & Lackey, 1963), despite the presence of a marine laboratory in the region for over 100 years. As the study by Lackey & Lackey (1963) focused solely upon the taxonomy of local protists, the ecological role of protozoans in Plymouth waters is unknown. To redress this anomaly the present pilot study was undertaken in Plymouth waters with the following objectives: to identify the dominant ciliates from this region using techniques unavailable to Lackey & Lackey (1963), to quantify ciliate abundance and cell sizes, and to estimate their biomass and production.Triplicate water samples were collected, using a 3-litre water bottle, from surface waters at each of four stations along a 20-km transect between Plymouth Sound (50°21'N 04°09'W) and the Eddystone Rock (50°ll'N 04°16'W) during June, July and August 1988.


Sign in / Sign up

Export Citation Format

Share Document