scholarly journals Analysis of Compound Postsynaptic Potentials in the Central Nervous System of the Surf Clam

1967 ◽  
Vol 50 (3) ◽  
pp. 759-778 ◽  
Author(s):  
DeForest Mellon

Compound postsynaptic potentials, comprising graded excitatory-inhibitory sequences, are the characteristic mode of response to afferent input exhibited by a population of cells in the visceroparietal ganglion of Spisula. Experimentally induced interaction between the phases of the response indicates that the observed sequential invasion represents differences in individual component latencies, rather than the physiological resultant of two separate processes having simultaneous onset but different rates of decay. Excitation is depressed by changes in membrane conductance throughout the duration of the inhibitory phase; moreover, since similar pathways from the periphery initiate both phases, excitatory events are limited to a duration roughly equal in length to the latency for the inhibition. Within this interval repetitive volleys can evoke summation of excitatory events. The inhibitory mechanism is temporally stable, however, and dominates the membrane during repetitive trains of volleys at 1 to 100 per sec. Artificially generated increases in the membrane potential decrease the IPSP while increasing the amplitude of the EPSP. Thus, both phases of the compound response appear to result from events occurring at chemically transmitting synaptic loci. Evidence is presented that these events are driven via collaterals of the same afferent fibers. The behavioral role of these response sequences is uncertain. Analogies, in terms of some observed reflex activity in these clams, appear to exist but presently lack experimental verification.

1995 ◽  
Vol 691 (1-2) ◽  
pp. 92-98 ◽  
Author(s):  
T. Shimizu ◽  
M. Yoshimura ◽  
H. Baba ◽  
K. Shimoji ◽  
H. Higashi

1989 ◽  
Vol 144 (1) ◽  
pp. 1-12
Author(s):  
R. R. Stewart ◽  
W. B. Adams ◽  
J. G. Nicholls

1. The role of presynaptic Ca2+ entry in facilitation of transmitter release has been analysed by voltage-clamp measurements at synapses formed in culture by Retzius and P neurones isolated from the central nervous system (CNS) of the leech. The transmitter released by Retzius cells is serotonin. 2. Synaptic transmission persisted in solutions containing raised concentrations of divalent cations, reduced concentrations of Na+, and tetraethylammonium (TEA+) and 4-AP (to block K+ currents). Ca2+ and Sr2+ were more effective in promoting transmitter release than Ba2+, as assessed by the postsynaptic potentials in P cells. The degree and time course of facilitation in Ca2+- and Sr2+-containing solutions were similar to those observed for synapses bathed in normal L-15 medium. 3. Transmitter release depended upon the amplitude and the duration of presynaptic depolarization and inward Ca2+ current. Peak Ca2+ currents and postsynaptic potentials occurred with depolarizing steps to +15 mV. Frequent or prolonged pulses depressed the postsynaptic potentials. 4. Pairs of depolarizing pulses that caused facilitation were accompanied by identical inward Ca2+ currents. These results indicate that the mechanism responsible for facilitated serotonin release must occur following Ca2+ entry and that residual Ca2+ plays a role.


2004 ◽  
Vol 171 (4S) ◽  
pp. 328-328
Author(s):  
Teruhiko Yokoyama ◽  
Kunihiro Nozaki ◽  
Osamu Fujita ◽  
Miyabi Inoue ◽  
Hiromi Kumon

2020 ◽  
Vol 26 (4) ◽  
pp. 449-453
Author(s):  
Jacob A. Kahn ◽  
Jeffrey T. Waltz ◽  
Ramin M. Eskandari ◽  
Cynthia T. Welsh ◽  
Michael U. Antonucci

The authors report an unusual presentation of juvenile xanthogranuloma (JXG), a non–Langerhans cell histiocytosis of infancy and early childhood. This entity typically presents as a cutaneous head or neck nodule but can manifest with more systemic involvement including in the central nervous system. However, currently there is limited information regarding specific imaging features differentiating JXG from other neuropathological entities, with diagnosis typically made only after tissue sampling. The authors reviewed the initial images of a young patient with shunt-treated hydrocephalus and enlarging, chronic, extraaxial processes presumed to reflect subdural collections from overshunting, and they examine the operative discovery of a mass lesion that was pathologically proven to be JXG. Their results incorporate the important associated histological and advanced imaging features, including previously unreported metabolic activity on FDG PET. Ultimately, the case underscores the need to consider JXG in differential diagnoses of pediatric intracranial masses and highlights the potential role of PET in the initial diagnosis and response to treatment.


2020 ◽  
pp. 49-56
Author(s):  
T. Shirshova

Disorders of the musculoskeletal system in school-age children occupy 1-2 places in the structure of functional abnormalities. Cognitive impairment without organic damage to the central nervous system is detected in 30-56% of healthy school children. Along with the increase in the incidence rate, the demand for rehabilitation systems, which allow patients to return to normal life as soon as possible and maintain the motivation for the rehabilitation process, is also growing. Adaptation of rehabilitation techniques, ease of equipment management, availability of specially trained personnel and availability of technical support for complexes becomes important.


2019 ◽  
Vol 20 (7) ◽  
pp. 750-758 ◽  
Author(s):  
Yi Wu ◽  
Hengxun He ◽  
Zhibin Cheng ◽  
Yueyu Bai ◽  
Xi Ma

Obesity is one of the main challenges of public health in the 21st century. Obesity can induce a series of chronic metabolic diseases, such as diabetes, dyslipidemia, hypertension and nonalcoholic fatty liver, which seriously affect human health. Gut-brain axis, the two-direction pathway formed between enteric nervous system and central nervous system, plays a vital role in the occurrence and development of obesity. Gastrointestinal signals are projected through the gut-brain axis to nervous system, and respond to various gastrointestinal stimulation. The central nervous system regulates visceral activity through the gut-brain axis. Brain-gut peptides have important regulatory roles in the gut-brain axis. The brain-gut peptides of the gastrointestinal system and the nervous system regulate the gastrointestinal movement, feeling, secretion, absorption and other complex functions through endocrine, neurosecretion and paracrine to secrete peptides. Both neuropeptide Y and peptide YY belong to the pancreatic polypeptide family and are important brain-gut peptides. Neuropeptide Y and peptide YY have functions that are closely related to appetite regulation and obesity formation. This review describes the role of the gutbrain axis in regulating appetite and maintaining energy balance, and the functions of brain-gut peptides neuropeptide Y and peptide YY in obesity. The relationship between NPY and PYY and the interaction between the NPY-PYY signaling with the gut microbiota are also described in this review.


Sign in / Sign up

Export Citation Format

Share Document