Study of thermochemical sulfate reduction of different organic matter: Insight from systematic TSR simulation experiments

2019 ◽  
Vol 100 ◽  
pp. 434-446 ◽  
Author(s):  
Heng Zhao ◽  
Wenhui Liu ◽  
Tenger Borjigin ◽  
Jianyong Zhang ◽  
Houyong Luo ◽  
...  
2007 ◽  
Vol 35 (4) ◽  
pp. 401-406 ◽  
Author(s):  
Kang-le DING ◽  
Shu-yuan LI ◽  
Chang-tao YUE ◽  
Ning-ning ZHONG

2020 ◽  
Vol 24 (4) ◽  
pp. 2475-2483
Author(s):  
Qigen Deng ◽  
Jingping Yin ◽  
Tao Zhang ◽  
Hao Wang

It is generally considered that the thermochemical sulfate reduction is one of the main origins of high content of hydrogen sulfide (H2S). Thermochemical sulfate reduction simulation experiments at different temperatures ranging from 200?C to 600?C were carried out to study the output of gaseous products, which include CO2, CH4, H2S, and heavy hydrocarbon (C2-6). Thermochemical sulfate reduction can promote the formation of CH4 and H2S, and can preferentially consume heavy hydrocarbons. The CH4 is difficult to participate in the reaction of formation H2S. The concentrations of CO2 and hydrogen are closely related to the evolution characteristics of H2S. The intermediate sulfur-containing products from thermochemical reaction and thermal cracking of coals can promote the progress of thermochemical sulfate reduction and possible formation of H2S.


2013 ◽  
Vol 10 (2) ◽  
pp. 1193-1207 ◽  
Author(s):  
S.-W. Duan ◽  
S. S. Kaushal

Abstract. Rising water temperatures due to climate and land use change can accelerate biogeochemical fluxes from sediments to streams. We investigated impacts of increased streamwater temperatures on sediment fluxes of dissolved organic carbon (DOC), nitrate, soluble reactive phosphorus (SRP) and sulfate. Experiments were conducted at 8 long-term monitoring sites across land use (forest, agricultural, suburban, and urban) at the Baltimore Ecosystem Study Long-Term Ecological Research (LTER) site in the Chesapeake Bay watershed. Over 20 yr of routine water temperature data showed substantial variation across seasons and years. Lab incubations of sediment and overlying water were conducted at 4 temperatures (4 °C, 15 °C, 25 °C, and 35 °C) for 48 h. Results indicated: (1) warming significantly increased sediment DOC fluxes to overlying water across land use but decreased DOC quality via increases in the humic-like to protein-like fractions, (2) warming consistently increased SRP fluxes from sediments to overlying water across land use, (3) warming increased sulfate fluxes from sediments to overlying water at rural/suburban sites but decreased sulfate fluxes at some urban sites likely due to sulfate reduction, and (4) nitrate fluxes showed an increasing trend with temperature at some forest and urban sites but with larger variability than SRP. Sediment fluxes of nitrate, SRP and sulfate were strongly related to watershed urbanization and organic matter content. Using relationships of sediment fluxes with temperature, we estimate a 5 °C warming would increase mean sediment fluxes of SRP, DOC and nitrate-N across streams by 0.27–1.37 g m−2 yr−1, 0.03–0.14 kg m−2 yr−1, and 0.001–0.06 kg m−2 yr−1. Understanding warming impacts on coupled biogeochemical cycles in streams (e.g., organic matter mineralization, P sorption, nitrification, denitrification, and sulfate reduction) is critical for forecasting shifts in carbon and nutrient loads in response to interactive impacts of climate and land use change.


2012 ◽  
Vol 44 ◽  
pp. 53-70 ◽  
Author(s):  
Zhibin Wei ◽  
Clifford C. Walters ◽  
J. Michael Moldowan ◽  
Paul J. Mankiewicz ◽  
Robert J. Pottorf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document