natural gases
Recently Published Documents


TOTAL DOCUMENTS

532
(FIVE YEARS 76)

H-INDEX

41
(FIVE YEARS 5)

Author(s):  
Y. Z. Alekberov ◽  
◽  
R. Z. Khalilov ◽  
X. G. Ismailova ◽  
◽  
...  

This article describes the adsorption capability of natural zeolites for the purification and dehydration of natural gases. Studies were carried out with natural clinoptilolite treated with various cadmium and titanium solutions. Zeolite-containing rocks were used as a natural adsorbent and experiments using a synthetic CaA zeolite were also carried for comparison. The experiments showed that zeolite from the Ai-Dag deposits possesses the highest activity in terms of sulfur compound. Its activity is closer to that of synthetic CaA zeolite. Studies showed that natural zeolites and adsorbents obtained on their basis allow the gas to be dehydrated to a dew point temperature of minus 40-45 °C. This is sufficient to prepare gas for transportation directly from the fields under any climatic conditions. Keywords: gas dehydration; zeolite; adsorbent; sulfur compounds.


Lubricants ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 117
Author(s):  
Raj Shah ◽  
Rui Chen ◽  
Mathias Woydt

Primary energy has become a vital part of society—from mobility, heating, and cooling to refrigeration to preserve food as well as for simple communication methods, such as texting. As such, pollution and environmental concerns regarding the impact of human activities have become mainstream and efforts have been made to reduce solid wastes as well as CO2 and greenhouse gas emissions. Renewable energy is almost synonymous with environmentally friendly. While energy conversion from fossil fuels and natural gases is responsible for most of the pollution (CO2, NOx, SO2, particulate matter (PM), etc.) in modern society, these processes also generated 86% of global primary energy in 2019. Furthermore, as humans become more dependent on energy, power demands will only increase with time. Material hunger represents another little perceived dependency of human prosperity. The longevity of products and goods is crucial to limit CO2eq emissions associated with material streams. This paper will focus on two relationships: that of CO2 and friction, and that of sustainability and wear protection.


2021 ◽  
Vol 937 (4) ◽  
pp. 042085
Author(s):  
N Mukhutdinov ◽  
I Khalismatov ◽  
N Akramova ◽  
R Zakirov ◽  
A Zakirov ◽  
...  

Abstract The results of long-term studies of natural gases in the Bukhara-Khiva oil and gas region of Uzbekistan are summarized. The results of studying the composition of gases in hydrocarbon deposits generated by OM of continental (terrigenous deposits of the Cretaceous and Middle Jurassic) and marine (carbonate Jurassic) facies are presented. Regularities of changes in individual constituents of gases (hydrocarbons, hydrogen sulfide, carbon dioxide, nitrogen, etc.) with depth are considered; the influence exerted on the composition of gases by various factors and, above all, those of them, which, in the opinion of most researchers, are the main ones. The revealed patterns are used for predictive assessment of the distribution of various constituents of natural gases in the study area.


Author(s):  
Rishabh Sehgal

Abstract: With the rapid decrease in conventional energy sources and serious issues like Global Warming and change in the climate, there is an immediate need to find sources that are renewable and will last for a long time. Hydrogen as a fuel is a good alternative given its abundance. Hydrogen production uses natural gases and electrolysis of water, thus directly or indirectly creating pollution. But this doesn’t mean that energy provided by hydrogen is clean in the utmost sense. Hence there is a need to segregate and analyze different Hydrogen production techniques. In this paper, we will briefly discuss the biological methods of Hydrogen production from biomass and applications of hydrogen. Keywords: Biological H2 production, Aerobic Reaction, Anaerobic reactions, Fuel cell.


2021 ◽  
Author(s):  
Andrey Serebryakov ◽  
Tat'yana Smirnova ◽  
Valentina Mercheva ◽  
Elena Soboleva

This textbook is a publication of the latest generation, designed to optimize the national project "Education"; develops theoretical knowledge about the genesis of natural liquid, gaseous and solid combustible minerals, the formation of the composition and properties, the practical significance of fuel and energy natural complexes. It is devoted to the study of the composition, properties and classification of oils, gas condensate, natural gases and solid combustible minerals, studied at the level of modern achievements of instrumental analytical and factory equipment in accordance with existing technologies, theories and hypotheses about the genesis of hydrocarbons and Earth sciences. The publication is supplemented with the main directions of processing of combustible minerals. Digital and graphical types of chemical models of the synergy of components of gas and oil deposits are described, which are necessary for predicting the phase state and composition of hydrocarbons and optimizing the directions of processing of marketable products. To facilitate the process of cognition of the origin and formation of the composition and properties of natural combustible minerals, a glossary, tests, as well as questions for the test and exam are offered. To control the knowledge gained by students while studying textbook materials, each chapter is accompanied by questions and tasks. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for students studying in the fields of 05.04.01, 05.03.01 "Geology", 21.05.02 "Applied Geology", as well as for specialists in the field of geology, geochemistry, extraction and processing of oil, gas, gas condensate, solid fuels.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012049
Author(s):  
O N Medvedeva ◽  
S D Perevalov

Abstract The object of the research is an isothermal tank container for storage and transportation of liquefied natural gases, which requires special operating conditions and is related to a technological facility of increased danger. The purpose of the study is to substantiate the type and thickness of the insulating material to reduce the losses of liquefied natural gas during storage and transportation. Based on the results of the analysis, effective insulation materials were selected for use in cryogenic tanks for isothermal storage of LNG, the optimal thickness of the insulation material was determined, which provides the required level of losses for gas evaporation.


2021 ◽  
Vol MA2021-02 (44) ◽  
pp. 1340-1340
Author(s):  
Hanping Ding ◽  
Wenjuan Bian ◽  
Pengxi Zhu ◽  
Dong Ding ◽  
Lucun Wang ◽  
...  

Nafta-Gaz ◽  
2021 ◽  
Vol 77 (8) ◽  
pp. 553-560
Author(s):  
Anna Huszał ◽  

Due to rapid advancement in technology, the odorization process in Poland seems to be increasingly stabilized in practice and conducted at a sufficiently high level. International standards are adopted in this regard. One of the most important requirements for the natural gases quality delivered to customers from a distribution network, guaranteeing their safe use is ensuring an appropriate odorization level, allowing to detect the uncontrolled gas leakages from the distribution network, installation and gas appliances. The odorant concentration in its dosing point should ensure the intensity of the gas odor at the “clearly perceptible” level at the network end point. The odorant concentration variability in the gas network is a dynamic value, constantly accompanying the odorizing process. In consequence constant metrological supervision over the process is needed (what might be done by measuring the odorant concentration and gas odor intensity). Also, verification of undergoing periodic changes in the value of the minimum concentration of odorant in the gas for the respective groups of natural gases and various gas pipelines based on operational experience and field measurements is required. Such verification allows to determine the optimal concentration of odorant for each group of natural gases and furthermore allows to optimize the cost of gas odorization process while ensuring its legally required quality described as odor intensity. This article presents the problem of the dependence of the network gas odorization effectiveness on various factors, especially network parameters or even the gas composition itself. Their identification allows to better plan the process and ensure its effective implementation, which ultimately ensures safety for gas users.


2021 ◽  
Vol 68 (2) ◽  
pp. 304-312
Author(s):  
Adel El-Husseiny ◽  
Rania Farouq ◽  
Hassan A. Farag ◽  
Yehia El Taweel

Natural gas is a mixture that is widely used in the industries. Knowledge of its thermodynamic properties is essential for evaluating the process and equipment performance. This paper quantifies the energy that can be extracted from natural gas using a turbo expander. Natural gases of wide-ranging compositions collected from 6 different gas fields in Egypt were investigated based on energy and exergy analysis. The study was conducted using MATLAB. Numerous simulation runs were made by taking various typical feed compositions classified as lean and rich. The effects of increasing the amount of C1, C5 in the feed stream on the efficiency of energy utilization are presented. A validation analysis was performed. The results show similar trends and good agreements. It was concluded from the results that when the concentration of methane in the gas mixture increase, the exergetic efficiency decreases. The results also show that the values of thermodynamic properties depend on the relative amount of heavy components in the feed stream.


Sign in / Sign up

Export Citation Format

Share Document