Integrating benthic habitat indicators: Working towards an ecosystem approach

Marine Policy ◽  
2018 ◽  
Vol 90 ◽  
pp. 88-94 ◽  
Author(s):  
Sophie A.M. Elliott ◽  
Laurent Guérin ◽  
Roland Pesch ◽  
Petra Schmitt ◽  
Bryony Meakins ◽  
...  
Author(s):  
N.N. Krupina ◽  

Based on the analysis of the tense ecological situation in the industrial zones of industrial cities, the role and place of special landscaping areas in the implementation of national projects is substantiated. From the perspective of the ecosystem approach, a set of requirements and a list of priority optimization decisions regarding the planning organization of environmental protection landscaping are proposed. The matrix of situational analysis of the state and the composition of indicators for assessing the barrier potential of a territory with a special land use regime are presented.


Author(s):  
Vincentius P. Siregar ◽  
Sam Wouthuyzen ◽  
Andriani Sunuddin ◽  
Ari Anggoro ◽  
Ade Ayu Mustika

Shallow marine waters comprise diverse benthic types forming habitats for reef fish community, which important for the livelihood of coastal and small island inhabitants. Satellite imagery provide synoptic map of benthic habitat and further utilized to estimate reef fish stock. The objective of this research was to estimate reef fish stock in complex coral reef of Pulau Pari, by utilizing high resolution satellite imagery of the WorldView-2 in combination with field data such as visual census of reef fish. Field survey was conducted between May-August 2013 with 160 sampling points representing four sites (north, south, west, and east). The image was analy-zed and grouped into five classes of benthic habitats i.e., live coral (LC), dead coral (DC), sand (Sa), seagrass (Sg), and mix (Mx) (combination seagrass+coral and seagrass+sand). The overall accuracy of benthic habitat map was 78%. Field survey revealed that the highest live coral cover (58%) was found at the north site with fish density 3.69 and 1.50 ind/m2at 3 and 10 m depth, respectively. Meanwhile, the lowest live coral cover (18%) was found at the south site with fish density 2.79 and 2.18  ind/m2 at 3 and 10 m depth, respectively. Interpolation on fish density data in each habitat class resulted in standing stock reef fish estimation:  LC (5,340,698 ind), DC (56,254,356 ind), Sa (13,370,154 ind), Sg (1,776,195 ind) and Mx (14,557,680 ind). Keywords: mapping, satellite imagery, benthic habitat, reef fish, stock estimation


Data Series ◽  
10.3133/ds320 ◽  
2008 ◽  
Author(s):  
Guy R. Cochrane ◽  
Jonathan A. Warrick ◽  
Yael Sagy ◽  
David Finlayson ◽  
Jodi Harney

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 48
Author(s):  
Margaret F.J. Dolan ◽  
Rebecca E. Ross ◽  
Jon Albretsen ◽  
Jofrid Skarðhamar ◽  
Genoveva Gonzalez-Mirelis ◽  
...  

The use of habitat distribution models (HDMs) has become common in benthic habitat mapping for combining limited seabed observations with full-coverage environmental data to produce classified maps showing predicted habitat distribution for an entire study area. However, relatively few HDMs include oceanographic predictors, or present spatial validity or uncertainty analyses to support the classified predictions. Without reference studies it can be challenging to assess which type of oceanographic model data should be used, or developed, for this purpose. In this study, we compare biotope maps built using predictor variable suites from three different oceanographic models with differing levels of detail on near-bottom conditions. These results are compared with a baseline model without oceanographic predictors. We use associated spatial validity and uncertainty analyses to assess which oceanographic data may be best suited to biotope mapping. Our results show how spatial validity and uncertainty metrics capture differences between HDM outputs which are otherwise not apparent from standard non-spatial accuracy assessments or the classified maps themselves. We conclude that biotope HDMs incorporating high-resolution, preferably bottom-optimised, oceanography data can best minimise spatial uncertainty and maximise spatial validity. Furthermore, our results suggest that incorporating coarser oceanographic data may lead to more uncertainty than omitting such data.


2021 ◽  
Vol 13 (5) ◽  
pp. 2703
Author(s):  
Rodrigo A. Estévez ◽  
Stefan Gelcich

The United Nations calls on the international community to implement an ecosystem approach to fisheries (EAF) that considers the complex interrelationships between fisheries and marine and coastal ecosystems, including social and economic dimensions. However, countries experience significant national challenges for the application of the EAF. In this article, we used public officials’ knowledge to understand advances, gaps, and priorities for the implementation of the EAF in Chile. For this, we relied on the valuable information held by fisheries managers and government officials to support decision-making. In Chile, the EAF was established as a mandatory requirement for fisheries management in 2013. Key positive aspects include the promotion of fishers’ participation in inter-sectorial Management Committees to administrate fisheries and the regulation of bycatch and trawling on seamounts. Likewise, Scientific Committees formal roles in management allow the participation of scientists by setting catch limits for each fishery. However, important gaps were also identified. Officials highlighted serious difficulties to integrate social dimensions in fisheries management, and low effective coordination among the institutions to implement the EAF. We concluded that establishing clear protocols to systematize and generate formal instances to build upon government officials’ knowledge seems a clear and cost effective way to advance in the effective implementation of the EAF.


Sign in / Sign up

Export Citation Format

Share Document