An Ecosystem Approach to Fisheries: Linkages with Sea Turtles, Marine Mammals and Seabirds

Author(s):  
Horrocks J. ◽  
N. Ward ◽  
A.M. Haynes-Sutton
Phytotaxa ◽  
2015 ◽  
Vol 233 (3) ◽  
pp. 236 ◽  
Author(s):  
Roksana Majewska ◽  
J. P. Kociolek ◽  
Evan W. Thomas ◽  
Mario De Stefano ◽  
Mario Santoro ◽  
...  

Marine mammals such as whales and dolphins have been known for a long time to host a very specific epizoic community on their skin. Less known however is the presence of a similar community on the carapaces of sea turtles. The present study is the first describing new taxa inhabiting sea turtle carapaces. Samples, collected from nesting olive ridley sea turtles (Lepidochelys olivacea) on Ostional Beach (Costa Rica), were studied using light and scanning electron microscopy. Two unknown small-celled gomphonemoid taxa were analysed in more detail and are described as two new genera, closely related to other gomphonemoid genera with septate girdle bands, such as Tripterion, Cuneolus and Gomphoseptatum. Chelonicola Majewska, De Stefano & Van de Vijver gen. nov. has a flat valve face, uniseriate striae composed of more than three areolae, simple external raphe endings, internally a siliceous flap over the proximal raphe endings and lives on mucilaginous stalks. Poulinea Majewska, De Stefano & Van de Vijver gen. nov. has at least one concave valve, uniseriate striae composed of only two elongated areolae, external distal raphe endings covered by thickened siliceous flaps and lives attached to the substrate by a mucilaginous pad. Chelonicola costaricensis Majewska, De Stefano & Van de Vijver sp. nov. and Poulinea lepidochelicola Majewska, De Stefano & Van de Vijver sp. nov. can be separated based on stria structure, girdle structure composed of more than 10 copulae, raphe structure and general valve outline. A cladistics analysis of putative members of the Rhoicospheniaceae indicates that the family is polyphyletic. Chelonicola and Poulinea are sister taxa, and form a monophyletic group with Cuneolus and Tripterion, but are not closely related to Rhoicosphenia, or other genera previously assigned to this family. Features used to help diagnose the family such as symmetry and presence of septa and pseudosepta are homoplastic across the raphid diatom tree of life.


2021 ◽  
Author(s):  
Leslie Roberson ◽  
Chris Wilcox

Abstract Fisheries bycatch continues to drive the decline of many threatened marine species such as seabirds, sharks, marine mammals, and sea turtles. Management frameworks typically address bycatch with fleet-level controls on fishing. Yet, individual operators differ in their fishing practices and efficiency at catching fish. If operators have differing abilities to target species, they should also have differing abilities to anti-target bycatch species. We analyse variations in threatened species bycatch among individual operators from five industrial fisheries representing different geographic areas, gear types, and target species. The individual vessel is a significant predictor of bycatch for 15 of the 16 species-fishery interactions, including species that represent high or low costs to fishers, or have economic value as potentially targeted byproducts. Encouragingly, we found high performance operators in all five fishing sectors, including gears known for high bycatch mortality globally. These results show the potential to reduce negative environmental impacts of fisheries with incentive-based interventions targeting specific performance groups of individuals. Management of threatened species bycatch Incidental catch of marine animals in fishing gear ("bycatch") has been recognized as a serious problem for several decades. Despite widespread efforts to address it, bycatch remains one of the most pressing issues in fisheries management today, especially for threatened or protected species such as sea turtles, seabirds, elasmobranchs, and marine mammals1,2. The most common approaches to reducing bycatch have been command-and-control measures implemented across the entire fleet or industry, such as technology requirements or total allowable catch for particular bycatch species3,4. These conventional approaches have been far from universally successful, and have often performed worse in practice than models and trials suggested, even when the same approach is translated to a similar fishery5. The Skipper Effect Managing bycatch is a problem of fishing efficiency. Although management frameworks typically treat fishing fleets as a unit, several studies suggest that the skill of individual operators (the "skipper effect") could be a driver of important and unexplained variations in fishing efficiency. A skipper's skill is some combination of managerial ability, experience and knowledge of the environment, ability to respond to rapidly changing information and conditions at sea, and numerous other factors that are difficult to describe or record6. There is ongoing debate about the key components of operator skill and its importance in different contexts, such as different gears or technical advancement of fisheries7–10. Yet, numerous studies show consistent variation in target catch rates among anglers, skippers, or fishing vessels that is not explained by environmental variables or economic inputs7,11−13. This includes technically advanced and homogeneous fleets where a skipper's skill would seemingly be less important14. Previously, the skipper effect has been explored in relation to fishing efficiency and profitability (effort and target catch). However, if fishers have differing abilities to catch species they want, it follows that they would also have variable skill at avoiding unwanted species. Untangling the skipper effect is difficult without very detailed data, which are often not available for target catch and are extremely rare for bycatch. We capitalize on a rare opportunity to compare multiple high-resolution fisheries datasets that have information about both target and bycatch. We use fisheries observer data from five Australian Commonwealth fisheries sectors to answer three key questions: 1) Is there significant and predictable variation among operators in their target to bycatch ratios? We hypothesize that there are characteristics at the operator level that lead some vessels to perform worse than others on a consistent basis, and that operator skill is an important factor driving variations in bycatch across fishing fleets; 2) Does the pattern hold across species, gear types, and fisheries? We predict that, irrespective of the bycatch context, there are high performing operators that are able to avoid bycatch while maintaining high target catch; and 3) Does skipper skill transfer across species?” We posit that certain types of bycatch are inherently more difficult to avoid but expect to find correlations between bycatch rates, indicating that a skipper's ability to avoid one species extends to other types of bycatch. If these hypotheses hold true, then there exists untapped potential to reduce bycatch without imposing additional controls on fishing effort and gear. This would support an alternative approach to framing management questions such as those around threatened species bycatch. It may be that it is not a random event across a fishery, but in fact is an issue of particular low performance operators. In this case, measures aimed directly at those individual operators could be an opportunity to make considerable progress towards reducing threatened species bycatch, at potentially much lower cost than common whole-of-fishery solutions.


2018 ◽  
Author(s):  
Abel Valdivia ◽  
Shaye Wolf ◽  
Kieran Suckling

AbstractThe U.S. Endangered Species Act (ESA) is the world’s strongest environmental law protecting imperiled plants and animals, and a growing number of marine species have been protected under this law as extinction risk in the oceans has increased. Marine mammals and sea turtles comprise 36% of the 161 ESA-listed marine species, yet analyses of recovery trends after listing are lacking. Here we gather the best available annual population estimates for all marine mammals (n=33) and sea turtles (n=29) listed under the ESA as species. Of these, we quantitatively analyze population trends, magnitude of population change, and recovery status for representative populations of 23 marine mammals and 9 sea turtles, which were listed for more than five years, occur in U.S. waters, and have data of sufficient quality and span of time for trend analyses. Using generalized linear and non-linear models, we found that 78% of marine mammals (n=18) and 78% of sea turtles (n=7) significantly increased after listing; 13% of marine mammals (n=3) and 22% of sea turtles (n=2) showed non-significant changes; while 9% of marine mammals (n=2), but no sea turtles declined after ESA protection. Overall, species with populations that increased in abundance were listed for 20 years or more (e.g., large whales, manatees, and sea turtles). Conservation measures triggered by ESA listing such as ending exploitation, tailored species management, and fishery regulations, among others, appear to have been largely successful in promoting species recovery, leading to the delisting of some species and to increases in most. These findings underscore the capacity of marine mammals and sea turtles to recover from substantial population declines when conservation actions under the ESA are implemented in a timely and effective manner.


2021 ◽  
Vol 224 (4) ◽  
pp. jeb236216
Author(s):  
Chihiro Kinoshita ◽  
Takuya Fukuoka ◽  
Tomoko Narazaki ◽  
Yasuaki Niizuma ◽  
Katsufumi Sato

ABSTRACTAnimals with high resting metabolic rates and low drag coefficients typically have fast optimal swim speeds in order to minimise energy costs per unit travel distance. The cruising swim speeds of sea turtles (0.5–0.6 m s−1) are slower than those of seabirds and marine mammals (1–2 m s−1). This study measured the resting metabolic rates and drag coefficients of sea turtles to answer two questions: (1) do turtles swim at the optimal swim speed?; and (2) what factors control the optimal swim speed of turtles? The resting metabolic rates of 13 loggerhead and 12 green turtles were measured; then, the cruising swim speeds of 15 loggerhead and 9 green turtles were measured and their drag coefficients were estimated under natural conditions. The measured cruising swim speeds (0.27–0.50 m s−1) agreed with predicted optimal swim speeds (0.19–0.32 m s−1). The resting metabolic rates of turtles were approximately one-twentieth those of penguins, and the products of the drag coefficient and frontal area of turtles were 8.6 times higher than those of penguins. Therefore, our results suggest that both low resting metabolic rate and high drag coefficient of turtles determine their slow cruising speed.


Author(s):  
J. Kevin Craig ◽  
Larry B. Crowder ◽  
Charlotte D. Gray ◽  
Carrie J. McDaniel ◽  
Tyrrell A. Kenwood ◽  
...  

2013 ◽  
Vol 71 (1) ◽  
pp. 128-142 ◽  
Author(s):  
M. Dickey-Collas ◽  
G. H. Engelhard ◽  
A. Rindorf ◽  
K. Raab ◽  
S. Smout ◽  
...  

Abstract Dickey-Collas, M., Engelhard, G. H., Rindorf, A., Raab, K., Smout, S., Aarts, G., van Deurs, M., Brunel, T., Hoff, A., Lauerburg R. A. M., Garthe, S., Haste Andersen, K., Scott, F., van Kooten, T., Beare, D., and Peck, M. A. Ecosystem-based management objectives for the North Sea: riding the forage fish rollercoaster. – ICES Journal of Marine Science, 71: . The North Sea provides a useful model for considering forage fish (FF) within ecosystem-based management as it has a complex assemblage of FF species. This paper is designed to encourage further debate and dialogue between stakeholders about management objectives. Changing the management of fisheries on FF will have economic consequences for all fleets in the North Sea. The predators that are vulnerable to the depletion of FF are Sandwich terns, great skua and common guillemots, and to a lesser extent, marine mammals. Comparative evaluations of management strategies are required to consider whether maintaining the reserves of prey biomass or a more integral approach of monitoring mortality rates across the trophic system is more robust under the ecosystem approach. In terms of trophic energy transfer, stability, and resilience of the ecosystem, FF should be considered as both a sized-based pool of biomass and as species components of the system by managers and modellers. Policy developers should not consider the knowledge base robust enough to embark on major projects of ecosystem engineering. Management plans appear able to maintain sustainable exploitation in the short term. Changes in the productivity of FF populations are inevitable so management should remain responsive and adaptive.


2021 ◽  
Vol 8 ◽  
Author(s):  
Idoia Meaza ◽  
Jennifer H Toyoda ◽  
John Pierce Wise Sr

Microplastics are ubiquitous pollutants in the marine environment and a health concern. They are generated directly for commercial purposes or indirectly from the breakdown of larger plastics. Examining a toxicological profile for microplastics is a challenge due to their large variety of physico-chemical properties and toxicological behavior. In addition to their concentration, other parameters such as polymer type, size, shape and color are important to consider in their potential toxicity. Microplastics can adsorb pollutants such as polycyclic aromatic hydrocarbons (PAHs) or metals on their surface and are likely to contain plastic additives that add to their toxicity. The observations of microplastics in seafood increased concern for potential human exposure. Since literature considering microplastics in humans is scarce, using a One Environmental Health approach can help better inform about potential human exposures. Marine mammals and sea turtles are long-lived sentinel species regularly used for biomonitoring the health status of the ocean and share trophic chain and habitat with humans. This review considers the available research regarding microplastic and plastic fiber exposures in humans, marine mammals and turtles. Overall, across the literature, the concentration of microplastics, size, color, shape and polymer types found in GI tract and feces from sea turtles, marine mammals and humans are similar, showing that they might be exposed to the same microplastics profile. Additionally, even if ingestion is a major route of exposure due to contaminated food and water, dermal and inhalation studies in humans have provided data showing that these exposures are also health concerns and more effort on these routes of exposures is needed. In vitro studies looked at a variety of endpoints showing that microplastics can induce immune response, oxidative stress, cytotoxicity, alter membrane integrity and cause differential expression of genes. However, these studies only considered three polymer types and short-term exposures, whereas, due to physiological relevance, prolonged exposures might be more informative.


Sign in / Sign up

Export Citation Format

Share Document