scholarly journals Ecosystem-based management for kelp forest ecosystems

Marine Policy ◽  
2022 ◽  
Vol 136 ◽  
pp. 104919
Author(s):  
Sara L. Hamilton ◽  
Mary G. Gleason ◽  
Natalio Godoy ◽  
Norah Eddy ◽  
Kirsten Grorud-Colvert
2002 ◽  
Vol 29 (4) ◽  
pp. 436-459 ◽  
Author(s):  
Robert S. Steneck ◽  
Michael H. Graham ◽  
Bruce J. Bourque ◽  
Debbie Corbett ◽  
Jon M. Erlandson ◽  
...  

Kelp forests are phyletically diverse, structurally complex and highly productive components of coldwater rocky marine coastlines. This paper reviews the conditions in which kelp forests develop globally and where, why and at what rate they become deforested. The ecology and long archaeological history of kelp forests are examined through case studies from southern California, the Aleutian Islands and the western North Atlantic, well-studied locations that represent the widest possible range in kelp forest biodiversity. Global distribution of kelp forests is physiologically constrained by light at high latitudes and by nutrients, warm temperatures and other macrophytes at low latitudes. Within mid-latitude belts (roughly 40–60° latitude in both hemispheres) well-developed kelp forests are most threatened by herbivory, usually from sea urchins. Overfishing and extirpation of highly valued vertebrate apex predators often triggered herbivore population increases, leading to widespread kelp deforestation. Such deforestations have the most profound and lasting impacts on species-depauperate systems, such as those in Alaska and the western North Atlantic. Globally urchin-induced deforestation has been increasing over the past 2–3 decades. Continued fishing down of coastal food webs has resulted in shifting harvesting targets from apex predators to their invertebrate prey, including kelp-grazing herbivores. The recent global expansion of sea urchin harvesting has led to the widespread extirpation of this herbivore, and kelp forests have returned in some locations but, for the first time, these forests are devoid of vertebrate apex predators. In the western North Atlantic, large predatory crabs have recently filled this void and they have become the new apex predator in this system. Similar shifts from fish- to crab-dominance may have occurred in coastal zones of the United Kingdom and Japan, where large predatory finfish were extirpated long ago. Three North American case studies of kelp forests were examined to determine their long history with humans and project the status of future kelp forests to the year 2025. Fishing impacts on kelp forest systems have been both profound and much longer in duration than previously thought. Archaeological data suggest that coastal peoples exploited kelp forest organisms for thousands of years, occasionally resulting in localized losses of apex predators, outbreaks of sea urchin populations and probably small-scale deforestation. Over the past two centuries, commercial exploitation for export led to the extirpation of sea urchin predators, such as the sea otter in the North Pacific and predatory fishes like the cod in the North Atlantic. The large-scale removal of predators for export markets increased sea urchin abundances and promoted the decline of kelp forests over vast areas. Despite southern California having one of the longest known associations with coastal kelp forests, widespread deforestation is rare. It is possible that functional redundancies among predators and herbivores make this most diverse system most stable. Such biodiverse kelp forests may also resist invasion from non-native species. In the species-depauperate western North Atlantic, introduced algal competitors carpet the benthos and threaten future kelp dominance. There, other non-native herbivores and predators have become established and dominant components of this system. Climate changes have had measurable impacts on kelp forest ecosystems and efforts to control the emission of greenhouse gasses should be a global priority. However, overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon. Management should focus on minimizing fishing impacts and restoring populations of functionally important species in these systems.


2017 ◽  
Vol 3 (2) ◽  
pp. e1601759 ◽  
Author(s):  
Todd J. Braje ◽  
Torben C. Rick ◽  
Paul Szpak ◽  
Seth D. Newsome ◽  
Joseph M. McCain ◽  
...  

2019 ◽  
Vol 225 (4) ◽  
pp. 1447-1454 ◽  
Author(s):  
Dan A. Smale

2016 ◽  
Vol 67 (1) ◽  
pp. 14 ◽  
Author(s):  
Daniel C. Reed ◽  
Andrew R. Rassweiler ◽  
Robert J. Miller ◽  
Henry M. Page ◽  
Sally J. Holbrook

Many ecological processes play out over longer time scales and larger spatial scales than can be studied in a traditional 2–4-year grant cycle. Uncertainties in future funding hinder efforts to implement comprehensive research programs that integrate coupled time series observations of physical variables and ecological responses, manipulative experiments and synthetic analyses over the long term. Such research is essential for advancing our understanding of ecological responses associated with climate change, and the physical and biological processes that control them. This need is perhaps greatest for ecosystems that display highly dynamic and spatially complex patterns that are difficult to explain with short-term, small-scale studies. Such is the case for kelp forest ecosystems, which often show tremendous spatial and temporal variability in resource supply, consumer control and physical disturbance across spatial scales of metres to hundreds of kilometres and temporal scales of hours to decades. Here we present four examples from the Santa Barbara Coastal Long-term Ecological Research project that demonstrate the value of a broad temporal and spatial perspective in understanding the causes and ecological consequences of short-term local dynamics of giant kelp forests of California, USA.


2010 ◽  
pp. 226-241 ◽  
Author(s):  
Robert S. Steneck ◽  
Rodrigo H. Bustamante ◽  
Paul K. Dayton ◽  
Geoffrey P. Jones ◽  
Alistair J. Hobday

Sign in / Sign up

Export Citation Format

Share Document