Species-specific cell–matrix interactions are essential for differentiation of alveoli like structures and milk gene expression in primary mammary cells of the Cape fur seal (Arctocephalus pusillus pusillus)

2006 ◽  
Vol 25 (7) ◽  
pp. 430-442 ◽  
Author(s):  
Julie A. Sharp ◽  
Kylie N. Cane ◽  
Sonia L. Mailer ◽  
W. Herman Oosthuizen ◽  
John P.Y. Arnould ◽  
...  
2020 ◽  
Author(s):  
Natascha Leijnse ◽  
Younes Barooji ◽  
Bram Verhagen ◽  
Lena Wullkopf ◽  
Janine Erler ◽  
...  

Abstract Filopodia are actin-rich structures, present on the surface of practically every known eukaryotic cell. These structures play a pivotal role in specific cell-cell and cell-matrix interactions by allowing cells to explore their environment, generate mechanical forces, perform chemical signaling, or convey signals via intercellular tunneling nano-bridges. The dynamics of filopodia appear quite complex as they exhibit a rich behavior of buckling, pulling, length and shape changes. Here, we find that filopodia additionally explore their 3D extracellular space by combining growth and shrinking with axial twisting and buckling of their actin rich core. Importantly, we show the rotational dynamics of the filamentous actin inside filopodia for a range of highly distinct and cognate cell types spanning from earliest development to highly differentiated tissue cells. Non-equilibrium physical modeling of actin and myosin confirm that twist, and hence rotation, is an emergent phenomenon of active filaments confined in a narrow channel which points to a generic mechanism present in all cells. Our measurements confirm that filopodia exert traction forces and form helical buckles in a range of different cell types that can be ascribed to accumulation of sufficient twist. These results lead us to conclude that activity induced twisting of the actin shaft is a general mechanism underlying fundamental functions of filopodia


2011 ◽  
Vol 301 (6) ◽  
pp. G968-G980 ◽  
Author(s):  
Kimberle A. Agle ◽  
Rebecca A. Vongsa ◽  
Michael B. Dwinell

Intestinal homeostasis is regulated in part by the single cell layer of the mucosal epithelium. This physical barrier is a prominent part of the innate immune system and possesses an intrinsic ability to heal damage and limit infection. The restitutive epithelial migration phase of healing requires dynamic integrin adhesion to the extracellular matrix. Previously, we have shown that the homeostatic chemokine CXCL12 utilizes intracellular calcium to increase enterocyte migration on laminin. The aim of these studies was to investigate integrin specificity and, in turn, functional responses elicited by CXCL12 stimulation. Analysis of cellular adhesion and spreading revealed CXCL12 preferentially activated laminin-specific integrins compared with collagen IV-binding integrins. Laminin-specific cell adhesion and spreading elicited by CXCL12 was dependent on intracellular calcium. CXCL12 increased activated β1-integrins on the surface of epithelial cells compared with untreated cells. RT-PCR confirmed expression of the laminin-binding integrins-α3β1, -α6β1, and -α6β4. Interestingly, shRNA-mediated depletion of laminin-specific α3- or α6-integrin subunits revealed differential functions. α3-Integrin knockdown reduced basal as well as inducible restitution. Depletion of α6-integrin specifically abolished CXCL12-stimulated, but not TGF-β1 or basal, migration. Depletion with either shα3-integrin or shα6-integrin prevented CXCL12-evoked cell spreading. Our data indicate that CXCL12 stimulates the inside-out activation of laminin-specific integrins to promote cell migratory functions. Together, our findings support the notion that extracellular mediators within the gastrointestinal mucosa coordinate cell-matrix interactions during epithelial restitution.


2020 ◽  
Author(s):  
Natascha Leijnse ◽  
Younes Farhangi Barooji ◽  
Bram Verhagen ◽  
Lena Wullkopf ◽  
Janine Terra Erler ◽  
...  

AbstractFilopodia are actin-rich structures, present on the surface of practically every known eukaryotic cell. These structures play a pivotal role in specific cell-cell and cell-matrix interactions by allowing cells to explore their environment, generate mechanical forces, perform chemical signaling, or convey signals via intercellular tunneling nano-bridges. The dynamics of filopodia appear quite complex as they exhibit a rich behavior of buckling, pulling, length and shape changes. Here, we find that filopodia additionally explore their 3D extracellular space by combining growth and shrinking with axial twisting and buckling of their actin rich core. Importantly, we show the rotational dynamics of the filamentous actin inside filopodia for a range of highly distinct and cognate cell types spanning from earliest development to highly differentiated tissue cells. Non-equilibrium physical modeling of actin and myosin confirm that twist, and hence rotation, is an emergent phenomenon of active filaments confined in a narrow channel which points to a generic mechanism present in all cells. Our measurements confirm that filopodia exert traction forces and form helical buckles in a range of different cell types that can be ascribed to accumulation of sufficient twist. These results lead us to conclude that activity induced twisting of the actin shaft is a general mechanism underlying fundamental functions of filopodia.


Author(s):  
Marc Lenburg ◽  
Rulang Jiang ◽  
Lengya Cheng ◽  
Laura Grabel

We are interested in defining the cell-cell and cell-matrix interactions that help direct the differentiation of extraembryonic endoderm in the peri-implantation mouse embryo. At the blastocyst stage the mouse embryo consists of an outer layer of trophectoderm surrounding the fluid-filled blastocoel cavity and an eccentrically located inner cell mass. On the free surface of the inner cell mass, facing the blastocoel cavity, a layer of primitive endoderm forms. Primitive endoderm then generates two distinct cell types; parietal endoderm (PE) which migrates along the inner surface of the trophectoderm and secretes large amounts of basement membrane components as well as tissue-type plasminogen activator (tPA), and visceral endoderm (VE), a columnar epithelial layer characterized by tight junctions, microvilli, and the synthesis and secretion of α-fetoprotein. As these events occur after implantation, we have turned to the F9 teratocarcinoma system as an in vitro model for examining the differentiation of these cell types. When F9 cells are treated in monolayer with retinoic acid plus cyclic-AMP, they differentiate into PE. In contrast, when F9 cells are treated in suspension with retinoic acid, they form embryoid bodies (EBs) which consist of an outer layer of VE and an inner core of undifferentiated stem cells. In addition, we have established that when VE containing embryoid bodies are plated on a fibronectin coated substrate, PE migrates onto the matrix and this interaction is inhibited by RGDS as well as antibodies directed against the β1 integrin subunit. This transition is accompanied by a significant increase in the level of tPA in the PE cells. Thus, the outgrowth system provides a spatially appropriate model for studying the differentiation and migration of PE from a VE precursor.


1997 ◽  
Vol 27 (1) ◽  
pp. 22-27
Author(s):  
K. GOLDRING ◽  
J. A. WARNER

Author(s):  
Jonas F. Eichinger ◽  
Maximilian J. Grill ◽  
Iman Davoodi Kermani ◽  
Roland C. Aydin ◽  
Wolfgang A. Wall ◽  
...  

AbstractLiving soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined tolerance around a so-called set point. This phenomenon is often referred to as mechanical homeostasis. In contradiction to the prominent role of mechanical homeostasis in various (patho)physiological processes, its underlying micromechanical mechanisms acting on the level of individual cells and fibers remain poorly understood, especially how these mechanisms on the microscale lead to what we macroscopically call mechanical homeostasis. Here, we present a novel computational framework based on the finite element method that is constructed bottom up, that is, it models key mechanobiological mechanisms such as actin cytoskeleton contraction and molecular clutch behavior of individual cells interacting with a reconstructed three-dimensional extracellular fiber matrix. The framework reproduces many experimental observations regarding mechanical homeostasis on short time scales (hours), in which the deposition and degradation of extracellular matrix can largely be neglected. This model can serve as a systematic tool for future in silico studies of the origin of the numerous still unexplained experimental observations about mechanical homeostasis.


Bone ◽  
1999 ◽  
Vol 24 (4) ◽  
pp. 297-303 ◽  
Author(s):  
P.G Genever ◽  
M.A Birch ◽  
E Brown ◽  
T.M Skerry

Sign in / Sign up

Export Citation Format

Share Document