Microstructure and intergranular corrosion resistance evaluation of AISI 304 steel for high temperature service

2008 ◽  
Vol 59 (5) ◽  
pp. 651-655 ◽  
Author(s):  
A. Yae Kina ◽  
V.M. Souza ◽  
S.S.M. Tavares ◽  
J.M. Pardal ◽  
J.A. Souza
Alloy Digest ◽  
2000 ◽  
Vol 49 (7) ◽  

Abstract Nirosta 4465 is a low-carbon, high-chromium alloy with nickel and molybdenum. It has good corrosion and intergranular corrosion resistance. The alloy is used for processing phosphate rock. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-797. Producer or source: ThyssenKrupp Nirosta.


Alloy Digest ◽  
2000 ◽  
Vol 49 (5) ◽  

Abstract Nirosta 4429 is a low-carbon, high-nitrogen version of type 316 stainless steel. The low carbon imparts intergranular corrosion resistance while the nitrogen imparts both higher strength and some increased pitting corrosion resistance. It is recommended for use as welded parts that need not or cannot be annealed after welding. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-787. Producer or source: ThyssenKrupp Nirosta.


Alloy Digest ◽  
2000 ◽  
Vol 49 (11) ◽  

Abstract Sandvik 5R75 is a molybdenum-containing austenitic stainless steel with titanium added to prevent intergranular corrosion by tying up the carbon. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-777. Producer or source: Sandvik Steel Company. Originally published March 2000, corrected November 2000.


Alloy Digest ◽  
1999 ◽  
Vol 48 (7) ◽  

Abstract URANUS S1 is the development of 15 years research into alloys containing high silicon contents (4% here) to resist the transpassive intergranular corrosion from such chemicals as concentrated nitric acid. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear strength. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-751. Producer or source: Cruesot-Marrel.


Author(s):  
Changqing Ye ◽  
Weiguo Zhai ◽  
Guangyao Lu ◽  
Qingsong Liu ◽  
Liang Ni ◽  
...  

In this paper, shielded metal arc welding on the dissimilar joint between 2205 duplex stainless steel and composite bimetallic plates (304 L stainless steel/10CrNi3MoV steel) with a filler metal E2209 was performed. Furthermore, the microstructure, phase, mechanical properties and intergranular corrosion resistance of the joints were investigated and element distributions of the interfaces were characterized. The results show that austenite transformed to ferrite under the influence of welding thermal cycle, and then a large amount of ferrite appeared in heat affected zone (HAZ) of 2205 duplex stainless steel. Coarse bainite grains were formed in HAZ of the 10CrNi3MoV steel near the fusion line with high temperature welding thermal cycle. Fine granular bainite was also generated in HAZ of 10CrNi3MoV steel due to the relatively short exposure time to the active temperature of grain growth. Local peak temperature near the base 10CrNi3MoV steel was still high enough to recrystallize the 10CrNi3MoV steel to form partial-recrystallization HAZ due to phase change. The filler metal was compatible with the three kinds of base materials. The thickness of the elemental diffusion interfaces layers was about 100 µm. The maximum microhardness value was obtained in the HAZ of 2205 duplex stainless steel (287 ± 14 HV), and the minimum one appeared in HAZ of SS304L (213 ± 5 HV). The maximum tensile strength of the welded joint was about 670 ± 6 MPa, and the tensile specimens fractured in ductile at matrix of the composite bimetallic plates. The impact energy of the weld metal and HAZ of the 10CrNi3MoV steel tested at –20 °C were 274 ± 6 J and 308 ± 5 J, respectively. Moreover, the intergranular corrosion resistance of the weldment including 304 L stainless steel, weld metal, HAZs and 2205 duplex stainless steel was in good agreement with the functional design requirements of materials corrosion resistance.


Micron ◽  
2021 ◽  
pp. 103202
Author(s):  
Meng-jia Li ◽  
Shuo Liu ◽  
Xiang-dong Wang ◽  
Yun-jia Shi ◽  
Qing-lin Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document