Free surface effects on the recrystallization of compressed, stable, Al-Mn single crystals

2018 ◽  
Vol 146 ◽  
pp. 135-148 ◽  
Author(s):  
Magdalena M. Miszczyk ◽  
Henryk Paul ◽  
Julian H. Driver
1989 ◽  
Vol 157 ◽  
Author(s):  
W. Zhou ◽  
D.X. Cao ◽  
D.K. Sood

ABSTRACTIsothermal annealing behaviour of intrinsic amorphous layers produced by stoichiometric implantation in a—axis oriented α—Al2O3 single crystals has been studied. The amorphous phase transforms directly to α—Al2O3 at a well defined planar interface which moves towards the free surface. The epitaxial growth slows down after initial rapid crystallization, indicating two separate regimes. The interface velocity shows Arrhenius behaviour in both regimes with activation energies of 0.6 and 0.08 eV respectively. There is an evidence for additional surface or random crystallization into κ or γ-Al2O3 phases within the first few nm on the surface, after prolonged annealing. These results are remarkably different from those reported previously for c–axis oriented Al2O3 crystals, showing the importance of substrate orientation during crystallization. A tentative model to explain the crystallization behaviour is discussed.


Author(s):  
Yutaka Hiraoka ◽  
Tadayuki Fujii ◽  
Masatoshi Okada ◽  
Ryoji Watanabe

Author(s):  
Jeonghwa Seo ◽  
Bumwoo Han ◽  
Shin Hyung Rhee

Effects of free surface on development of turbulent boundary layer and wake fields were investigated. By measuring flow field around a surface piercing cylinder in various advance speed conditions in a towing tank, free surface effects were identified. A towed underwater Stereoscopic Particle Image Velocimetry (SPIV) system was used to measure the flow field under free surface. The cross section of the test model was water plane shape of the Wigley hull, of which longitudinal length and width were 1.0 m and 100 mm, respectively. With sharp bow shape and slender cross section, flow separation was not expected in two-dimensional flow. Flow fields near the free-surface and in deep location that two-dimensional flow field was expected were measured and compared to identify free-surface effects. Some planes perpendicular to longitudinal direction near the model surface and behind the model were selected to track development of turbulent boundary layer. Froude numbers of the test conditions were from 0.126 to 0.40 and corresponding Reynolds numbers were from 395,000 to 1,250,000. In the lowest Froude number condition, free-surface wave was hardly observed and only free surface effects without surface wave could be identified while violent free-surface behavior due to wave-induced separation dominated the flow fields in the highest Froude number condition. From the instantaneous velocity fields, Time-mean velocity, turbulence kinetic energy, and flow structure derived by proper orthogonal decomposition (POD) were analyzed. As the free-surface effect, development of retarded wake, free-surface waves, and wave-induced separation were mainly observed.


1999 ◽  
Vol 135 (1-2) ◽  
pp. 13-25 ◽  
Author(s):  
M. N. Noui-Mehidi ◽  
M. Wimmer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document