Partial transient liquid phase diffusion bonding of zirconium alloy (Zr–2.5Nb) to stainless steel 321

2012 ◽  
Vol 42 ◽  
pp. 172-183 ◽  
Author(s):  
M. Mazar Atabaki ◽  
M.E. Bajgholi ◽  
E.H. Dehkordi
2013 ◽  
Vol 750-752 ◽  
pp. 739-742
Author(s):  
Ying Ling Wang ◽  
Qiu Zhi Gao ◽  
Gui Fang Sun ◽  
Jie Ye

The transient liquid phase diffusion bonding (TLP-DB) was employed to join TiNi shape memory alloy (SMA) and stainless steel (SS) with an interlayer metal of Ag-Cu eutectic metal foil.The corrosion behavior of the TLP-DB joint in Hanks solution at 37°C was investigated by electrochemical methods.The results show that the corrosion resistance of the joint is comparable to, but lower than that of base metals during the early anodic polarization, and the corrosion rate of the joint is between that of TiNi SMA and SS in the transpassive region at high potentials. The corrosion resistance of the specimens in Hanks' solution is associated with the surface quality, mircotructure and the intermetallics. Both TiNi SMA and SS display the characteristics of localized corrosion with a little pitting corrosion, while the joints mainly show the characteristics of pitting corrosion concentrated on the enrichment Cu phases.


Author(s):  
M. Mazar Atabaki ◽  
J. Idris

In this study, an innovative method was applied for bonding Zircaloy-4 to stabilized austenitic stainless steel 321 using an active titanium interlayer. Specimens were joined by partial transient liquid phase diffusion bonding method in a vacuum furnace at different temperatures under 1 MPa dynamic pressure of contact. The influence of different bonding temperatures on the microstructure, microindentation hardness, joint strength, and interlayer thickness has been studied. Additionally, a simple numerical model was developed to predict the evolution of interlayer during partial transient liquid phase diffusion bonding. Diffusion of Fe, Cr, Ni, and Zr has been investigated by scanning electron microscopy examinations and energy dispersive spectroscopy elemental analyses. Results showed that control of heating and cooling rate and 20 min soaking at 1223 K produces a perfect joint. However, solid state diffusion of the melting point depressant elements into the joint metal causes the solid/liquid interface to advance until the joint is solidified. The tensile strength values of all bonded specimens were found around 480–670 MPa. Energy dispersive spectroscopy studies indicated that the melting occurred along the interface of bonded specimens as a result of transfer of atoms between the interlayer and the matrix during bonding. The evolution of interlayer film thickness indicates a good agreement between the calculation and experimental measurement. This technique provides a reliable method of bonding zirconium alloy to stainless steel.


Author(s):  
Kavian Cooke ◽  
Tahir Khan

Aluminum metal matrix composites are materials frequently used in the automotive and aerospace industries due to their high strength-to-weight ratio, formability, corrosion resistance, and long-term durability. However, despite the unique properties of these materials, the lack of a reliable joining method has restricted their full potential in engineering applications. This article explores the effect of bonding time on transient liquid phase diffusion bonding of Al6061 containing 15 vol.% alumina particles using a 5 μm electrodeposited Ni-coating containing nano-sized alumina particles as the interlayer. Joint formation was attributed to the solid-state diffusion of Ni into the Al6061 alloy followed by eutectic formation and isothermal solidification at the joint interface. Examination of the joint region using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction showed the formation of eutectic phases such as Al3Ni, Al9FeNi, and Ni3Si within the joint zone. The results indicate that the addition of nano-size reinforcements into the interlayer can be used to improve joint strength. The joint strength recorded was 136 MPa at a bonding time of 10 min with a marginal increase in the shear strength when the bonding time is increased to 30 min.


2012 ◽  
Vol 33 ◽  
pp. 469-475 ◽  
Author(s):  
Kavian O. Cooke ◽  
Tahir I. Khan ◽  
Gossett D. Oliver

Sign in / Sign up

Export Citation Format

Share Document