A study of sliding wear behaviors of Al-7075 alloy and Al-7075 hybrid composite by response surface methodology analysis

2013 ◽  
Vol 50 ◽  
pp. 351-359 ◽  
Author(s):  
Ravinder Kumar ◽  
Suresh Dhiman
2021 ◽  
pp. 1-18
Author(s):  
Kartheesan S ◽  
B. Shahul hamid Khan ◽  
M Kamaraj ◽  
Manoj Gupta ◽  
Sravya Tekumalla

Abstract In this study, a pure magnesium material reinforced with 0.5, 1, 1.5, and 2 weight % of CaO was prepared through disintegrated melt deposition technique. Nanocomposites were investigated for their sliding wear behaviour in dry condition at room temperature. Amount of CaO, Load, sliding distance, and Sliding velocity were selected as input design parameters at their five-level in central composite design using Minitab 18.1 statistical software. The influence of design parameters on wear loss is reported through the Response Surface Methodology (RSM). ANOVA was used to confirm the soundness of the developed regression equation. The results indicate the contribution of linear, quadratic, and interaction terms of design parameters on response. 3D response surface and 2D contour plots are indicated the interaction effect. The result shows that an increase in sliding velocity contributes to a decrease in the wear loss of the composites because of the emergence of protective oxidative layer at the surfaces of the pins, which is confirmed through FESEM and EDAX analysis of the pin surfaces. Wear loss of the material decreased as amount of CaO increased. The ANOVA analysis concluded that the sliding distance and load contribute significantly to wear loss of the composites and their percentage of contribution is 64.02 % and 3.69%.


2015 ◽  
Vol 24 (6) ◽  
pp. 096369351502400 ◽  
Author(s):  
N. Radhika ◽  
R. Raghu

Functionally graded aluminium LM25/silicon nitride composite was produced through stir casting followed by centrifugal casting and obtained a hollow cylindrical cast component with dimensions of 150 × 150 × 20 mm. The microstructural examination and the hardness test were carried out on the outer (1 mm) and inner surface (17 mm) as the function of radial distance from the outer periphery. The outer surface was observed with particle enriched region compared to inner surface and exhibited higher hardness. Hence the outer surface of the functionally graded composite was only further subjected to sliding wear test in pin-on-disc tribometer. The Central Composite Design in Response Surface Methodology was used to design the experiments for the selected parameters such as load (15–45 N), velocity (0.5–2.5 m/s) and sliding distance (500–2000 m). Regression test and Analysis of Variance were conducted to check the adequacy of the constructed model. The surface plots for wear rate showed that wear rate increased with increase in load and non-linearly varied with increase in velocity and sliding distance. Scanning Electron Microscopy analysis was conducted on the worn-out surfaces and observed mild to severe wear transition on increase of load.


2017 ◽  
Vol 4 (10) ◽  
pp. 11096-11101 ◽  
Author(s):  
K.V. Sreenivasa Rao ◽  
Govindaraju

2015 ◽  
Vol 1119 ◽  
pp. 622-627 ◽  
Author(s):  
Chye Lih Tan ◽  
Azwan Iskandar Azmi ◽  
Noorhafiza Muhammad

Drilling is an essential secondary process for near net-shape of hybrid composite as to achieve the required dimensional tolerances prior to final application. Dimensional tolerance is often influenced by the surface integrity or surface roughness of the workpart. Thus, this paper aims to employ the Taguchi and response surface methodologies in minimizing the surface roughness of drilled carbon-glass hybrid fibre reinforced polymer (CGCG) using tungsten carbide, K20 drill bits. The effects of spindle speed, feed rate and tool geometry on surface roughness were evaluated and optimum cutting conditions for minimizing the aforementioned response was determined. Subsequently, response surface methodology (RSM) was utilised in finding the empirical relationships between experimental parameters and surface roughness based on the Taguchi results. The experimental analyses reveal that surface roughness is greatly influenced by feed rate and tool geometry rather than the spindle speed. This is due to the increment of feed that attributed to the increased strain rate and hence, deteriorated the surface roughness of the hybrid composite. The predicted results (via regression model) and theoretical results (via additivity law) were in good agreement with experiment results. This indicates that the regression model from response surface methodology (RSM) can be used to predict the surface roughness in machining of CGCG hybrid composite.


2021 ◽  
Vol 9 ◽  
Author(s):  
R. Kousik Kumaar ◽  
◽  
K. Somasundara Vinoth ◽  
Kavitha M ◽  
◽  
...  

This article aims in exploring the dry sliding wear performances on the aluminum (AA7075) metal matrix composites reinforced with molybdenum disulphide which is a solid lubricant using response surface methodology (RSM). Specific Wear Rate (SWR) for the AA7075 pure alloy, AA7075+2wt% molybdenum disulphide and AA7075+4wt% molybdenum disulphide were measured according to ASTM G99 standards in pin-on-disc apparatus. Design of experiments was selected with changed parameters like the varying percentage of molybdenum disulphide (%), applied load (N), and sliding velocity (m/s) based on Central Composite Design in response surface methodology considering them as continuous factors. Experiments for the specific wear rate of pure alloy and the composites were conducted. The volume loss was measured using the pin-on-disc apparatus from which the specific wear rate value was calculated. The obtained results are analyzed and a mathematical model was formulated using the response surface methodology. The optimum level parameters for the specific wear rate has been identified and the results of the experiment specify that the sliding velocity and molybdenum disulphide percentage have a substantial role in controlling the wear behaviour of composites when compared with the other parameter. The optimum condition for the specific wear rate was identified and experimented with for studying the result.


Sign in / Sign up

Export Citation Format

Share Document