Structural, mechanical and tribological characterization of Zn25Al alloys with Si and Sr addition

2014 ◽  
Vol 64 ◽  
pp. 381-392 ◽  
Author(s):  
Aleksandar Vencl ◽  
Ilija Bobić ◽  
Filip Vučetić ◽  
Biljana Bobić ◽  
Jovana Ružić
2016 ◽  
Vol 58 (7-8) ◽  
pp. 608-611
Author(s):  
Violeta Merie ◽  
Viorica Ţărmure ◽  
Simion Haragâş ◽  
Andreea Pop

Author(s):  
Deepak Kumar ◽  
Ajay Kumar ◽  
Amneesh Singla ◽  
Rishi Dewan

Author(s):  
C. Ballesteros ◽  
J. A. Garci´a ◽  
M. I. Orti´z ◽  
R. Rodri´guez ◽  
M. Varela

A detailed tribological characterization of low-energy, nitrogen implanted V5 at. %Ti alloy is presented. Samples were nitrogen-implanted at an accelerating voltage of 1.2 kV and 1 mA/cm2, up to a dose of 1E19 ions/cm2. The tribological properties of the alloys: microhardness, friction coefficient and wear resistance, have improved after ion implantation and this improvement increases as the implantation temperature increases. The microstructure of the alloys were analysed by transmission electron microscopy. A direct correlation between structural modifications of the nitrogen implanted layer and the improvement in their tribological properties is obtained. For samples implanted at 848 K a nanocomposite layer where the reinforcement particles are TiN precipitates forms. TiN precipitation appears as the responsible of the improvement in the tribological properties.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Michael R. Lovell ◽  
P. Cohen ◽  
Pradeep L. Menezes ◽  
R. Shankar

When machining miniaturized components, the contact conditions between the tool and the workpiece exhibit very small contact areas that are on the order of 10−5 mm2. Under these conditions, extremely high contact stresses are generated, and it is not clear whether macroscopic theories for the chip formation, cutting forces, and friction mechanisms are applicable. For this reason, the present investigation has focused on creating a basic understanding of the frictional behavior in very small scale machining processes so that evaluations of standard macroscale models could be performed. Specialized machining experiments were conducted on 70/30 brass materials using high-speed steel tools over a range of speeds, feeds, depths of cut, and tool rake angles. At each operating condition studied, the friction coefficient and the shear factor τk were obtained. Based on the experimental results, it was determined that the standard macroscopic theory for analyzing detailed friction mechanisms was insufficient in very small scale machining processes. An approach that utilized the shear factor, in contrast, was found to be better for decoupling the physical phenomena involved. Utilizing the shear factor as an analysis parameter, the parameters that significantly influence the friction in microscale machining processes were ascertained and discussed.


Sign in / Sign up

Export Citation Format

Share Document