scholarly journals Friction-stir welding of ultrafine grained austenitic 304L stainless steel produced by martensitic thermomechanical processing

2015 ◽  
Vol 76 ◽  
pp. 130-140 ◽  
Author(s):  
S. Sabooni ◽  
F. Karimzadeh ◽  
M.H. Enayati ◽  
A.H.W. Ngan
2011 ◽  
Vol 409 ◽  
pp. 263-268 ◽  
Author(s):  
Yousef Imani ◽  
M.K. Besharati Givi ◽  
Michel Guillot

As a solid-state welding technology, friction stir welding (FSW) can join dissimilar materials with good mechanical properties. In this paper, friction stir welding between 304L stainless steel and commercially pure copper plates with thicknesses of 3 mm was performed. A number of FSW experiments were carried out to obtain the optimum mechanical properties by adjusting the rotational speed to 1000 rpm and welding speed in the range of 14-112 mm/min and with an adjustable offset of the pin location with respect to the butt line. Microstructural analyses have been done to check the weld quality. Cross-sectioning of the welds for metallographic analysis in planes perpendicular to the welding direction and parallel to the weld crown was also performed. The mechanical properties of the welds were determined using a combination of conventional microhardness and tensile testing. From this investigation it is found that the offset of the pin is an essential factor in producing defect free welds in friction stir welding of copper and steel.


Author(s):  
Madhumanti Bhattacharyya ◽  
Indrajit Charit ◽  
Krishnan Raja ◽  
Jens Darsell ◽  
Saumyadeep Jana

Abstract In recent time, solid state crack repair techniques in spent nuclear fuel dry storage canisters (SNF-DSC) have garnered significant interest. Plates of austenitic stainless steels are usually arc welded to fabricate the cylindrical canisters which are prone to chloride-induced stress corrosion cracking. Friction stir welding (FSW) is considered to be a potential candidate for damage repair. In this work, electrical discharge machining was used to simulate cracks in 304L stainless steel plates of 12.7 mm thickness. Subsequently, isothermal FSW was carried out at two different temperatures (725 and 825°C) in order to repair the simulated crack. Microstructure-mechanical property correlations in FSWed plates were studied in detail. Significant grain refinement observed in the stir zone (SZ) was attributed to dynamic recrystallization occurring during FSW. A comparison of Vickers microhardness showed higher hardness and homogeneity in the 725°C SZ than its 825°C counterpart. The fraction of Σ3 boundary is found to be low in the SZ as compared to base metal (BM). Yield strength of the joints was found to be approximately 100 MPa higher than that of the BM accompanied by a drop in ductility by a factor of 2. Residual stress profile across 825°C weld was measured using x-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document