welding method
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 73)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 2021 (6) ◽  
pp. 5340-5345
Author(s):  
WIDIA SETIAWAN ◽  
◽  
BERNADO PASARIBU ◽  
MUHAMMAD BADARUDIN THOHA ◽  
GUSTI KETUT PUDJA ◽  
...  

The lap joint will be used on aluminum 6061 and 10 mm thick brass with the Friction Stir Welding method. The probe used is EMS 45 steel with variations in pin lengths of 11 mm, 11.5 mm and 12 mm. The results of this study are in length 11.5 mm with the highest Vickers hardness value of 104.26 VHn compared to 11 mm and 12 mm pin length is 98.93 VHn and 70.43 VHn. The results of shear stress are 67.32 MPa at 12 mm pin length, higher than the 11 mm and 11.5 mm pin lengths of 40.2 MPa and 42.14 MPa.


POROS ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 6
Author(s):  
Pradipta Satrio Wibisono

In the automotive industry, the latest breakthroughs and innovations are strongly influenced bymaintaining and increasing production results so that the use and application of technology is anabsolute must, as is welding technology. Thin sheet-shaped components are found in many car bodies.One of the methods used in joining plate sheets is to use the resistance spot welding method, which is awelding process that is only carried out at a certain point using copper electrodes. In the welding method,maintaining quality in order to produce products and services that can meet the needs and expectationsof consumers related to the product's life time or service. SPCC steel (Cold Roller Stell Sheet) is one ofthe most widely used materials in car body welding applications. The characteristics and mechanicalproperties of SPCC steel from the results of the three-sheet welding were examined using the parametersof welding current, welding time, welding distance. The results showed that the increase in current wouldaffect the diameter of the electrode traces and the nuggets that were formed. The greater the current used,the larger the diameter of the trail, so that the optimum pull-shear load is at a current of 6.5 kA at adistance of 20mm with a value of 365.53 MPa, also the highest hardness value is in the nugget area witha hardness value of 595, 14 HVN at a current of 6.5 kA and from the results of measuring grain diameterin microstructural testing for the HAZ area the best at a welding current of 6.5 kA. Because the smallerthe weld grain diameter, the greater the strength of the weld joint. Then the data from the results of theshear-shear test are analyzed using the Taguchi method, and the most effective parameters in the tensilesheartest with a combination of A (6.5) B (1.5) C (15) and from the experimental results for tensile loads.slide obtained 397 MPa.


2021 ◽  
Vol 71 (2) ◽  
pp. 53-60
Author(s):  
Chatha Jagjeet Singh ◽  
Kohli Prabhsharan Singh ◽  
Handa Amit

Abstract Friction welding is a solid-state welding system which welds materials without authentic melting it. This study explores papers of different researchers on the friction welding method and it has been observed that the welding parameters like friction time; friction pressure, forge time and forge pressure highly affect properties of welded joints. The reason for this investigation is to exhort industry and the insightful world regarding advantages of revolving friction welding so the technique may be utilized in an ideal manner.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1283
Author(s):  
Ján Viňáš ◽  
Janette Brezinová ◽  
Jakub Brezina ◽  
Peter Hermel

This paper presents the innovation possibilities of the crushers functional parts and the results of layers’ renovation analyses of the surfaces worn by biomass crusher hammers. The worn functional surfaces of hammers made of Hardox 400 material were renovated by manual arc welding method (welded with a filled wire electrode with its own protection). As an additive material, Lincore 60-O tubular wire from Lincoln Electric was used. The quality of weld layers was assessed on the metallographic sections, where the presence of internal defects was monitored, and the microstructures of welds were identified. In addition to the metallographic analysis, the microhardness in terms of EN ISO 9015-2 was assessed. Based on the performed experiments, it is suitable for the crusher innovation to recommend the chain replacement with a shaped weldment made of Hardox 400 material, the weldability of which is very good, and to make at least one hardfacing layer on its functional surfaces. With this innovation, the service life of the crushing segment could be extended by more than ten-fold.


Author(s):  
S. Rajeshkannan ◽  
M. Vigneshkumar ◽  
V. Gopal ◽  
S. Ramesh

In this research work the aluminium alloys including AA7075 and AA5083 are combined with friction stir welding method. This contrasts with factors such as alloy segregation, hot cracking and porosity which result from fusion welding process in the welded area. In order to generate high quality joint of aluminium alloy, friction-stir welding (FSW) an assuring welding method is followed. To achieve the determined strength, an entire control over the relevant process is needed to increase the tensile vitality. The welding factors like welding speed (WS), axial force (AF) and rotational speed (RS) are examined for optimisation. In order to measure the impact of the factors on tensile strength of FS welded joints, Taguchi L9 orthogonal array technique is employed. The amount of involvement of these factors on weld quality is determined by means of analysis of variance (ANOVA). The utmost ultimate tensile strength (UTS) attained for AA7075 and AA5083 joint is 256MPa. ANOVA results show that the quality-wise effectiveness of the weld as welding speed (5.48percent), axial force (15.18percent), then the rotational speed (79.32percent). This is due to the presence of fine equiaxed grains in the microstructures of the stir zones at different FS welding circumstances. However, a decrease in the grain size of the process zone is observed when the frictional heat flow is decreased while friction-stir welding.


2021 ◽  
Vol 68 ◽  
pp. 770-777
Author(s):  
Huihong Liu ◽  
Tetsuya Miyagaki ◽  
Yeong-seok Lim ◽  
Masayoshi Kamai ◽  
Hidetoshi Fujii

Sign in / Sign up

Export Citation Format

Share Document