Stress-strain curve measurements of aluminum alloy and carbon steel by unconstrained-type high-pressure torsion testing

2017 ◽  
Vol 122 ◽  
pp. 226-235 ◽  
Author(s):  
Yasuhiro Yogo ◽  
Masatoshi Sawamura ◽  
Noritoshi Iwata ◽  
Nobuki Yukawa
2015 ◽  
Vol 30 (14) ◽  
pp. 2222-2230 ◽  
Author(s):  
Halim Al Baida ◽  
Cécile Langlade ◽  
Guillaume Kermouche ◽  
Ricardo Rafael Ambriz

Abstract


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Y. W. Kwon ◽  
Y. Esmaeili ◽  
C. M. Park

Because most structures are subjected to transient strain-rate loading, an experimental study was conducted to investigate the stress-strain behaviors of an aluminum alloy undergoing varying strain-rate loading. To this end, uniaxial tensile loading was applied to coupons of dog-bone shape such that each coupon underwent two or three different strain-rates, i.e., one rate after another. As a basis, a series of single-strain-rate tests was also conducted with strain-rates of 0.1–10.0 s−1. When the material experienced multistrain-rate loading, the stress-strain curves were significantly different from any single-strain-rate stress-strain curve. The strain-rate history affected the stress-strain curves under multistrain-rate loading. As a result, some simple averaging of single-strain-rate curves did not predict the actual multistrain-rate stress-strain curve properly. Furthermore, the fracture strain under multistrain-rate loading was significantly different from that under any single-strain-rate case. Depending on the applied strain-rates and their sequences, the former was much greater or less than the latter. A technique was proposed based on the residual plastic strain and plastic energy density in order to predict the fracture strain under multistrain-rate loading. The predicted fracture strains generally agreed well with the experimental data. Another observation that was made was that the unloading stress-strain curve was not affected by the previous strain-rate history.


2020 ◽  
Vol 61 (12) ◽  
pp. 2276-2283 ◽  
Author(s):  
Kohta Koenuma ◽  
Akinori Yamanaka ◽  
Ikumu Watanabe ◽  
Toshihiko Kuwabara

Author(s):  
Sajith Chandran T ◽  
Ajith M S

Due to the high corrosion resistance, the use of stainless steel is increased in a wide range of environment in the last two decades. The behaviour of stainless steel is different from that of carbon steel, especially in a stress-strain relationship. Stainless steel has a rounded stress-strain curve, whereas carbon steel exhibits a sharp yield point in the stress-strain curve. Stainless steel has better strain hardening capacity and possesses high ductility. Stiffeners are generally utilised in plate girder for increasing the load-carrying capacity by providing better resistance against buckling of web panels. The existing study related to austenitic stainless steel plate girder studied the effect of longitudinal stiffener placed at the centre of the web panel alone. Present work uses to optimise position of longitudinal stiffener in stainless steel plate girder subjected to combined bending and shear. The behaviour is analysed by using finite element software ABAQUS. The optimum location for longitudinal stiffener in long-span stainless steel plate girder under combined bending and shear was identified and compared the results with the standard design codes.


2012 ◽  
Vol 450-451 ◽  
pp. 252-256
Author(s):  
Jin Ping Hu

This paper first studied aluminum alloy honeycomb sandwich panel in out- plane static compress test.Through analyzing deformation characteristics, the loads-displacement relationship was obtained and are described by the average stress-strain curve. Secondly, using the Split Hopkinson Pressure Bar device of impact test, deformation behaviour,dynamic average stress-strain curve data and so on were got under different loading rates, thus learned impact dynamics characteristics of that.


Sign in / Sign up

Export Citation Format

Share Document