Kinetics of tungsten carbidization under non-isothermal conditions

2008 ◽  
Vol 43 (4) ◽  
pp. 897-906 ◽  
Author(s):  
S.L. Kharatyan ◽  
H.A. Chatilyan ◽  
L.H. Arakelyan
1970 ◽  
Vol 17 (1) ◽  
pp. 38-42
Author(s):  
Anna BIEDUNKIEWICZ ◽  
Pawel FIGIEL ◽  
Marta SABARA

The results of investigations on pyrolysis and oxidation of pure polyacrylonitrile (PAN) and its mixture with N,N-dimethylformamide (DMF) under non-isothermal conditions at linear change of samples temperature in time are presented. In each case process proceeded in different way. During pyrolysis of pure PAN the material containing mainly the product after PAN cyclization was obtained, while pyrolysis of PAN+DMF mixture gave the product after cyclization and stabilization. Under conditions of measurements, in both temperature ranges, series of gaseous products were formed.For the PAN-DMF system measurements at different samples heating rates were performed. The obtained results were in accordance with the kinetics of heterogeneous processes theory. The process rates in stages increased along with the temperature increase, and TG, DTG and HF function curves were shifted into higher temperature range. This means that the process of pyrolysis and oxidation of PAN in dry air can be carried out in a controlled way.http://dx.doi.org/10.5755/j01.ms.17.1.246


2021 ◽  
pp. 72-77
Author(s):  
Tien Hiep Nguyen ◽  
◽  
Van Minh Nguyen ◽  

In this work the kinetics of synthesizing process of metallic iron nanopowder by hydrogen reduction from α-FeOOH hydroxide under isothermal conditions were studied. α-FeOOH nanopowder was prepared in advance by chemical deposition from aqueous solutions of iron nitrate Fe(NO3)3 (10 wt. %) and alkali NaOH (10 wt. %) at room temperature, pH = 11, under the condition of continuous stirring. The hydrogen reduction process of α-FeOOH nanopowder under isothermal conditions was carried out in a tube furnace in the temperature range from 390 to 470 °C. The study of the crystal structure and composition of the powders was performed by X-ray phase analysis. The specific surface area S of the samples was measured using BET method by low-temperature nitrogen adsorption. The average particle size D of powders was determined via the measured S value. The size characteristics and morphology of the particles were investigated by transmission and scanning electron microscopes. The calculation of the kinetic parameters of the hydrogen reduction process of α-FeOOH under isothermal conditions was carried out by the Gray-Weddington model and Arrhenius equation. It is shown that the rate constant of reduction at 470 °C is approximately 2.2 times higher than in the case at 390 °C. The effective activation energy of synthesizing process of iron nanopowder by hydrogen reduction from α-FeOOH was ~38 kJ/mol, which indicates a mixed reaction mode. In this case, the kinetics overall process is limited by both the kinetics of the chemical reaction and the kinetics of diffusion, respectively, an expedient way to accelerate the process by increasing the temperature or eliminate the diffusion layer of the reduction product by intensive mixing. It is show that Fe nanoparticles obtained by hydrogen reduction of its hydroxide at 410 °C, corresponding to the maximum specific rate of the reduction process, are mainly irregular in shape, evenly distributed, the size of which ranges from several dozens to 100 nm with an average value of 75 nm.


Author(s):  
Hieр Nguyen Tien

The kinetics of metallic cobalt nanopowder synthesizing by hydrogen reduction from Co(OH)2 nanopowder under isothermal conditions were studied. Co(OH)2 nanopowder was prepared in advance by chemical deposition from aqueous solutions of Co(NO3)2 cobalt nitrate (10 wt.%) and NaOH alkali (10 wt.%) at room temperature, pH = 9 under continuous stirring. The hydrogen reduction of Co(OH)2 nanopowder under isothermal conditions was carried out in a tube furnace in the temperature range from 270 to 310 °C. The crystal structure and composition of powders was studied by X-ray phase analysis. The specific surface area of samples was measured using the BET method by low-temperature nitrogen adsorption. The average particle size of powders was determined by the measured specific surface area. Particles size characteristics and morphology were investigated by transmission and scanning electron microscopes. Kinetic parameters of Co(OH)2 hydrogen reduction under isothermal conditions were calculated using the Gray–Weddington model and Arrhenius equation. It was found that the rate constant of reduction at t = 310 °C is approximately 1.93 times higher than at 270 °C, so the process accelerates by 1.58 times for 40 min of reduction. The activation energy of cobalt nanopowder synthesizing from Co(OH)2 by hydrogen reduction is ~40 kJ/mol, which indicates a mixed reaction mode. It was shown that cobalt nanoparticles obtained by the hydrogen reduction of its hydroxide at 280 °C are aggregates of equiaxed particles up to 100 nm in size where individual particles are connected to several neighboring particles by contact isthmuses.


1991 ◽  
Author(s):  
N. E. Solov’ev ◽  
V. S. Makarov ◽  
L. N. Meschaninova ◽  
Ya. A. Ugai

2021 ◽  
Vol 111 ◽  
pp. 106248 ◽  
Author(s):  
Pietro Renato Avallone ◽  
Ernesto Raccone ◽  
Salvatore Costanzo ◽  
Marco Delmonte ◽  
Andrea Sarrica ◽  
...  

2020 ◽  
Vol 685 ◽  
pp. 178509 ◽  
Author(s):  
Michael L. Williams ◽  
James S. Dickmann ◽  
Mary E. McCorkill ◽  
John. C. Hassler ◽  
Erdogan Kiran

Sign in / Sign up

Export Citation Format

Share Document