An experimental investigation with minimum quantity lubrication and its comparison with various vegetable oil based cutting fluids during turning

2017 ◽  
Vol 4 (8) ◽  
pp. 8758-8768 ◽  
Author(s):  
R.K. Suresh ◽  
G. Krishnaiah ◽  
P. Venkataramaiah
2019 ◽  
Vol 20 (5) ◽  
pp. 506 ◽  
Author(s):  
Anshuman Das ◽  
Saroj Kumar Patel ◽  
Sudhansu Ranjan Das

The search of finding best vegetable oil based nanofluid from a set of three nanoparticle enriched cutting fluids for machining is core objective of the work. Extensive research has been done to replace conventional cutting fluids by nanofluids, but abundant analysis for vegetable oil based nanofluids is accomplished in this work which was not seen earlier. Also, the study investigated the cutting performance and comparative assessment towards machinability improvement during hard turning of high-strength-low-alloy (HSLA) AISI 4340 steel using four different compositions of nanofluids by minimum quantity lubrication (MQL) technique. Cutting are investigated and analyzed through this article during hard turning using minimum quantity lubrication (MQL). Cutting force, tool wear (flank and crater), surface integrity (surface roughness, residual stress, microhardness, and surface morphology), and chip morphology are considered as technological performance characteristics to evaluate the machinability of hardened AISI 4340 steel. Additionally, the effect of various fluid properties like thermal conductivity, viscosity, surface tension and contact angle were examined for all nanofluids. Three set of nanofluid samples were prepared using Al2O3, CuO and Fe2O3 with rice bran oil and their various properties are analysed at 0.1% concentration. On comparison among these three nanofluids used, CuO nanofluid exhibited superior behavior followed by Fe2O3 nanofluids while Al2O3 nanofluid was last in the row.


2021 ◽  
Author(s):  
Kashif Riaz Wattoo ◽  
Muhammad Zubair Khan ◽  
Asif Israr ◽  
Muhammad Amin

Abstract In Minimum Quantity Lubrication (MQL) very small amount of cutting fluids are used. Currently, nanoparticles are added into cutting fluids to magnify the cooling and lubricating properties. Several studies are available on MQL to check the machining performance in terms of cooling and lubrication using nanofluids like Ag, SiO2, MoS2, Al2O3, Cu and MWCNT. However, limited evidences are available in applying hybrid nanoparticles in machining processes. Present research investigates the effect of hybridization of two different nanofluids on machining performance in turning operation of Ti-6Al-4V alloy. Moreover, machineability was evaluated and analyzed by performing turning using minimum quantity lubrication (MQL) cooling technique. Cutting temperature and surface roughness of machined surface were taken as technological performance parameters to evaluate the machinability of Ti-6Al-4V alloy. Hybridization was performed by mixing alumina based nanofluid into graphene nanoparticles in a fixed volumetric proportion 80:20 using vegetable oil as base fluid. Additionally, machining performance was evaluated by preparing hybrid nanofluid in different concentrations like (0.25,0.50,0.75 and 1.00vol%) and tested for thermophysical properties before experimentation. Significant improvements in thermophysical properties were observed during hybridization of Al2O3 and Graphene. For parametric optimization and design of experiment, Taguchi orthogonal array has been employed. Machining performance of vegetable oil base alumina-graphene hybrid nanofluid was compared with monotype alumina based nanofluid and a significant reduction cutting temperature and surface roughness was observed respectively.


Sign in / Sign up

Export Citation Format

Share Document