Role of cutting fluids under minimum quantity lubrication: An experimental investigation of chip thickness

2020 ◽  
Vol 28 ◽  
pp. 1101-1105 ◽  
Author(s):  
Shrikant U. Gunjal ◽  
Sudarshan B. Sanap ◽  
Nilesh G. Patil
2020 ◽  
Vol 902 ◽  
pp. 97-102
Author(s):  
Tran Trong Quyet ◽  
Pham Tuan Nghia ◽  
Nguyen Thanh Toan ◽  
Tran Duc Trong ◽  
Luong Hong Sam ◽  
...  

This paper presents a prediction of cutting temperature in turning process, using a continuous cutting model of Johnson-Cook (J-C). An method to predict the temperature distribution in orthogonal cutting is based on the constituent model of various material and the mechanics of their cutting process. In this method, the average temperature at the primary shear zone (PSZ) and the secondary shear zone (SSZ) were determined for various materials, based on a constitutive model and a chip-formation model using measurements of cutting force and chip thicknes. The J-C model constants were taken from Hopkinson pressure bar tests. Cutting conditions, cutting forces and chip thickness were used to predict shear stress. Experimental cutting heat results with the same cutting parameters using the minimum lubrication method (MQL) were recorded through the Testo-871 thermal camera. The thermal distribution results between the two methods has a difference in value, as well as distribution. From the difference, we have analyzed some of the causes, finding the effect of the minimum quantity lubrication parameters on the difference.


Author(s):  
S. Vignesh ◽  
U. Mohammed Iqbal

This paper is concentrated on the exploration of carbonaceous nanocutting fluids with the concept of tri-hybridization with improved lubricative and cooling properties by using multi-walled carbon nanotubes, hexagonal boron nitride , and graphene nanoparticles with neat cold-pressed coconut oil in a fixed volumetric proportion. The rheological properties of the nanofluids were studied to assess their performance in real-time end milling operations using an AA7075 work piece on a CNC lathe machine under a minimum quantity lubrication environment. At the outset, the carbonaceous nanofluids gave good performance when compared to conventional cutting fluids. Furthermore, the surfaces of the tribo-pairs and the chips formed were analyzed using a profilometer and high-end microscopes. The results obtained from the experiments confirm that the tri-hybridized carbonaceous nanolubricant has reduced the cutting force, tool wear, and surface roughness when correlated to monotype nanofluids. The scanning electron microscope images of the surface and tool were studied and it was found that the surface quality was maintained while end milling with tri-hybridized carbonaceous nanofluid. Improvement of ∼17%, 20% and 25% in cutting forces, surface roughness and tool wear was found in tri-hybrid fluid when compared to other fluids. Thus, the present work indicates that the addition of carbon-based nanoparticles with coconut oil has offered better performance and is found to be a credible alternative to existing conventional cutting fluids.


Sign in / Sign up

Export Citation Format

Share Document