Optimization of Wear and Friction Parameters of (LM24/B4C) Composite Using Taguchi Technique

2019 ◽  
Vol 18 ◽  
pp. 3702-3710
Author(s):  
Ashish Kumar ◽  
Rishabh Kumar ◽  
V.K.Soni ◽  
R.S. Rana ◽  
Rajesh Purohit ◽  
...  
Author(s):  
K. D. Khromushkin ◽  
B. G. Ushakov ◽  
A. V. Kochergin ◽  
R. A. Suleev ◽  
O. N. Parmenova

The paper presents experimental data on the study of the friction parameters of hard alloys in sliding friction units, including the heating temperature, surface roughness, wear and friction coefficient, depending on the duration of the test and the friction path.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Prasanna Gadhari ◽  
Prasanta Sahoo

Tribological performance of Ni-P-TiO2 composite coatings is improved by varying the tribological test parameters such as normal load, wear track diameter, and duration of test aiming at minimum wear and friction of the coating. Taguchi technique with grey relational analysis is employed for optimization of multiresponse problem using L27 orthogonal array (OA). Analysis of variance (ANOVA) is used to find out the significant effect of test parameters and their interactions on friction and wear behavior of the coating. ANOVA results reveal that normal load and time (test duration) have the most significant effect in controlling wear and friction of the coating. Interaction between normal load and wear track diameter has some significant effect. Scanning electron microscopy of worn surface shows abrasive wear to be predominant. The surface morphology, composition, and phase structure analysis are done with the help of scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) analysis, respectively.


Author(s):  
Eknath Nivrutti Aitavade ◽  
S. C. Kamate

Biolubricants are renewable, biodegradable, nontoxic, and have zero greenhouse gases. In this work, the tribological properties of the Simarouba glauca biodiesel (SBD) are studied with nanoparticles as additives. Nanoparticles of copper oxide (CuO) and silicon dioxide (SiO2) were added with 0.2, 0.5, 0.75, and 1% weight (wt) in the base SBD. The coefficient of friction (COF) and the wear scar diameters (WSD) were evaluated using four ball tester for the test conditions as per ASTM D 4172 standard. The morphologies of the worn surfaces were inspected by scanning electron microscope (SEM). The addition of nanoparticles improved the friction and wear characteristics of SBD. A combination of abrasive and adhesive wear was evident. The average COF for pure SBD was 0.0168. The results indicated that 0.75% and 0.2% of CuO nanoparticles as a beneficial percentage in the base oil exhibiting the lowest COF and WSD. CuO nanoparticles proved to be superior to SiO2 nanoparticles as additives in SBD, demonstrating 8% and 60% decrease in wear and friction parameters, respectively.


Author(s):  
R. Viswanathan ◽  
K.G. Saravanan ◽  
J. Balaji ◽  
R. Prabu ◽  
K. Balasubramani

Author(s):  
Eknath Nivrutti Aitavade ◽  
S. C. Kamate

Biolubricants are renewable, biodegradable, nontoxic, and have zero greenhouse gases. In this work, the tribological properties of the Simarouba glauca biodiesel (SBD) are studied with nanoparticles as additives. Nanoparticles of copper oxide (CuO) and silicon dioxide (SiO2) were added with 0.2, 0.5, 0.75, and 1% weight (wt) in the base SBD. The coefficient of friction (COF) and the wear scar diameters (WSD) were evaluated using four ball tester for the test conditions as per ASTM D 4172 standard. The morphologies of the worn surfaces were inspected by scanning electron microscope (SEM). The addition of nanoparticles improved the friction and wear characteristics of SBD. A combination of abrasive and adhesive wear was evident. The average COF for pure SBD was 0.0168. The results indicated that 0.75% and 0.2% of CuO nanoparticles as a beneficial percentage in the base oil exhibiting the lowest COF and WSD. CuO nanoparticles proved to be superior to SiO2 nanoparticles as additives in SBD, demonstrating 8% and 60% decrease in wear and friction parameters, respectively.


2013 ◽  
Vol 9 (6) ◽  
pp. 766-772 ◽  
Author(s):  
C. Sabarinathan ◽  
Md. Ali ◽  
S. Muthu

2021 ◽  
Vol 1059 (1) ◽  
pp. 012047
Author(s):  
M A Omprakas ◽  
M Muthukumar ◽  
S P Saran ◽  
D Ranjithkumar ◽  
C M Shantha kumar ◽  
...  

Author(s):  
Doğuş ÖZKAN ◽  
M. Alper YILMAZ ◽  
Mirosław SZALA ◽  
Cenk TÜRKÜZ ◽  
Dariusz Chocyk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document