Experimental Analysis of Tribological Properties of Simarouba Glauca Biodiesel With Nanoparticles

Author(s):  
Eknath Nivrutti Aitavade ◽  
S. C. Kamate

Biolubricants are renewable, biodegradable, nontoxic, and have zero greenhouse gases. In this work, the tribological properties of the Simarouba glauca biodiesel (SBD) are studied with nanoparticles as additives. Nanoparticles of copper oxide (CuO) and silicon dioxide (SiO2) were added with 0.2, 0.5, 0.75, and 1% weight (wt) in the base SBD. The coefficient of friction (COF) and the wear scar diameters (WSD) were evaluated using four ball tester for the test conditions as per ASTM D 4172 standard. The morphologies of the worn surfaces were inspected by scanning electron microscope (SEM). The addition of nanoparticles improved the friction and wear characteristics of SBD. A combination of abrasive and adhesive wear was evident. The average COF for pure SBD was 0.0168. The results indicated that 0.75% and 0.2% of CuO nanoparticles as a beneficial percentage in the base oil exhibiting the lowest COF and WSD. CuO nanoparticles proved to be superior to SiO2 nanoparticles as additives in SBD, demonstrating 8% and 60% decrease in wear and friction parameters, respectively.

Author(s):  
Eknath Nivrutti Aitavade ◽  
S. C. Kamate

Biolubricants are renewable, biodegradable, nontoxic, and have zero greenhouse gases. In this work, the tribological properties of the Simarouba glauca biodiesel (SBD) are studied with nanoparticles as additives. Nanoparticles of copper oxide (CuO) and silicon dioxide (SiO2) were added with 0.2, 0.5, 0.75, and 1% weight (wt) in the base SBD. The coefficient of friction (COF) and the wear scar diameters (WSD) were evaluated using four ball tester for the test conditions as per ASTM D 4172 standard. The morphologies of the worn surfaces were inspected by scanning electron microscope (SEM). The addition of nanoparticles improved the friction and wear characteristics of SBD. A combination of abrasive and adhesive wear was evident. The average COF for pure SBD was 0.0168. The results indicated that 0.75% and 0.2% of CuO nanoparticles as a beneficial percentage in the base oil exhibiting the lowest COF and WSD. CuO nanoparticles proved to be superior to SiO2 nanoparticles as additives in SBD, demonstrating 8% and 60% decrease in wear and friction parameters, respectively.


2014 ◽  
Vol 66 (6) ◽  
pp. 662-670 ◽  
Author(s):  
De-Xing Peng ◽  
Yuan Kang

Purpose – The purpose of this work is to study tribological properties of liquid paraffin with SiO2 nanoparticles as an additive, which are made by surface-modification method. Taguchi robust designs for optimization in synthesizing SiO2 nanoparticles by sol-gel method. Design/methodology/approach – The tribological properties of the SiO2 nanoparticles as additive in liquid paraffin are studied by ball-on-ring wear tester to find out optimal concentration, and the mechanism of the reduction of wear and friction will be investigated by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and atomic force microscope (AFM). Findings – Under optimal conditions identified by Taguchi robust designs method, SiO2 nanoparticles with a narrow particle size distribution can be obtained and optimal concentrations of SiO2 nanoparticles as additives in liquid paraffin have better properties than the pure paraffin oil. Originality/value – It is shown in the paper that by reducing friction and AW, the lubricant prepared by the methods described can prolong operating hours of machinery.


2019 ◽  
Vol 71 (3) ◽  
pp. 499-508 ◽  
Author(s):  
Gitesh Kumar ◽  
Hem Chander Garg ◽  
Ajay Gijawara

PurposeThis paper aims to report the friction and wear characteristics of refined soybean oil (RSBO) blended with copper oxide (CuO) nanoparticles and zinc dialkyldithiophosphate (ZDDP) as additives.Design/methodology/approachFour different concentrations 0.04, 0.05, 0.1 and 0.2 Wt.% of CuO nanoparticles were added with ZDDP in RSBO. The friction and wear characteristics of lubricants have been investigated on a pin-on-disc tribotester under loads of 120 and 180 N, with rotating speeds of 1,200 and 1,500 rpm in half hour of operating time. The dispersion stability of CuO nanoparticles has been analyzed using ultraviolet visible (UV-Vis) spectroscopy. The wearout surface of pins has been examined by using a scanning electron microscope.FindingsThe results revealed that there is a reduction in the friction and wear by the addition of CuO nanoparticles and ZDDP in RSBO. Coefficient of friction increases at a high sliding speed for RSBO with ZDDP. From UV-Vis spectroscopy, it is observed that 100 ml of oleic acid surfactant per gram of CuO nanoparticles has stable dispersion in RSBO.Originality/valueThe addition of ZDDP and CuO nanoparticles in RSBO is more efficient to reduce the friction and wear in comparison to base oil. The optimum concentration of CuO nanoparticles in RSBO is 0.05 Wt.%.


2021 ◽  
Vol 100 (2) ◽  
pp. 34-40
Author(s):  
A. Kravtsov

In this work, the physical phenomenon of the formation of an oil film containing fullerenes was further developed, on the friction surface of tribosystems, which, in contrast to the known ones, takes into account the structural viscosity and structure of the formed film under the action of the electrostatic field of the friction surface. An increase in load significantly increases the structural viscosity of the gel structure, 13 - 20 times. The concentration of fullerenes in the base lubricant does not significantly affect the dynamic viscosity of aggregates in the composition of the liquid and the structure of the gel. An increase in the tribological properties of the base lubricant medium reduces the value of the structural viscosity of the gel on the friction surface by a factor of 3. At the same time, the concentration of fullerenes in the range of 0.5 - 1.5% does not have a large effect on these indicators. This phenomenon can be explained by the presence or absence of an additive package in the base lubricating medium. For those oils where the additive package is absent or present in a small amount J/m3, the introduction of a fullerene composition promotes the formation of clusters and micelles, which increase the structural viscosity and, consequently, form a film on the friction surface in the form of a gel structure. Conversely, if fullerenes are introduced into a base oil that contains a large and balanced additive package, where tribological properties are high J/m3, interaction at the molecular level does not occur. Fullerenes to a lesser extent will form stable aggregates in the form of micelles. The effect of reducing the coefficient of friction, equal to 96 %, is typical for low and medium loads of operation of tribosystems and base lubricants with average values of tribological properties. With increasing loads or tribological properties of base oils, the effect of the use of fullerenes decreases.


Present study was carried out for knowing how nanotechnology can be employed for improving the performances in tribology. A significant number of investigations have been reported on the effect of nanoparticles as oil additives. The wear and friction tests were carried on four ball oil tester using ZDDP, NiO and MoS2 nanoparticles in 1wt% combination with mineral oil to provides the reduction in friction and wear. Much of the research suggests that even up to 1% concentrations of such particles are instrumental in reducing wear and friction. Nanoparticle additives have proved to be promising for development of Tribological properties of mineral oil. The tribological properties of typical engine oil like SAE15W40 mineral oil added with nanoparticle additives were studied and then experimental analysis was done. Investigations were performed on oil having concentrations of Zinc Dialkyl Dithio Phosphate, Molybdenum Disulfide and Nickel Oxide nanoparticles and their combinations to find that anti wear properties are improved. The evaluation of the tribological behavior pertaining to friction was determined using four ball oil testing machine TR-30L containing combination of above described nanoparticles together in base oil showed the most promising results


Author(s):  
K. D. Khromushkin ◽  
B. G. Ushakov ◽  
A. V. Kochergin ◽  
R. A. Suleev ◽  
O. N. Parmenova

The paper presents experimental data on the study of the friction parameters of hard alloys in sliding friction units, including the heating temperature, surface roughness, wear and friction coefficient, depending on the duration of the test and the friction path.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 884
Author(s):  
Andrzej Borawski

Braking systems have a direct impact on the safety of road users. That is why it is crucial that the performance of brakes be dependable and faultless. Unfortunately, the operating conditions of brakes during their operating time are affected by many variables, which results in changes in their tribological properties. This article presents an attempt to develop a methodology for studying how the operating time affects the value of the coefficient of friction and the abrasive wear factor. The Taguchi method of process optimization was used to plan the experiment, which was based on tests using the ball-cratering method. The results clearly show that the degree of wear affects the properties of the friction material used in the production process of brakes.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 75 ◽  
Author(s):  
Jerzy Jozwik ◽  
Krzysztof Dziedzic ◽  
Marcin Barszcz ◽  
Mykhaylo Pashechko

Phenomena occurring in the contact area between two mating bodies are characterised by high complexity and variability. Comparisons are usually made between parameters such as the coefficient of friction, friction force, wear and temperature in relation to time and friction path. Their correct measurement enables the proper evaluation of tribological properties of materials used in the friction pair. This paper concerns the measurements of basic tribological parameters in the friction of selected polymer composites. Knowing the tribological properties of these composite materials, it will be possible to create proper operating conditions for kinematic friction pairs. This study investigated the coefficients of friction, friction force and temperatures of six polymer composites: cast polyamide PA6 G with oil, PA6 G with MoS2, polyoxymethylene POM with aluminium, polyethylene terephthalate PET with polytetrafluoroethylene PTFE, PTFE with bronze, and PTFE with graphite. The friction surface was also examined using an optical system and computer software for 3D measurements. As a result, PA6-G with oil was found to be the best choice as a composite material for thin sliding coatings.


RSC Advances ◽  
2017 ◽  
Vol 7 (8) ◽  
pp. 4312-4319 ◽  
Author(s):  
Maoquan Xue ◽  
Zhiping Wang ◽  
Feng Yuan ◽  
Xianghua Zhang ◽  
Wei Wei ◽  
...  

TiO2/Ti3C2Tx hybrid nanocomposites were successfully prepared by a liquid phase synthesis technology. The hybrid nanocomposites improve the tribological properties of base oil by mending the surface and formation a uniform tribofilm on the surface.


Sign in / Sign up

Export Citation Format

Share Document