Mass transfer enhancement in a two-phase flow electrochemical reactor

2020 ◽  
Vol 27 ◽  
pp. 426-433
Author(s):  
M. Vijay ◽  
G.V.S. Sarma ◽  
D.U.S.L. Deepthi ◽  
K.V. Ramesh
Processes ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 33 ◽  
Author(s):  
Jin-yuan Qian ◽  
Xiao-juan Li ◽  
Zhi-xin Gao ◽  
Zhi-jiang Jin

Liquid–liquid two-phase flow in microchannels has attracted much attention, due to the superiority of mass transfer enhancement. One of the biggest unresolved challenges is the low mixing efficiency at the microscale. Suitable mixing efficiency is important to promote the mass transfer of two-phase flow in microchannels. In this paper, the mixing efficiency in three junction configurations, including a cross-shaped junction, a cross-shaped T-junction, and a T-junction, is investigated by the volume of fluid (VOF) method coupled with user-defined scalar (UDS) model. All three junction configurations are designed with the same hydraulic diameter of 100 μm. Mixing components are distributed in the front and back parts of the droplet. The mixing efficiency in the droplet forming stage and the droplet moving stage are compared quantitatively. Results show that different junction configurations create very different mixing efficiencies, and the cross-shaped T-junction performs best, with relatively lower disperse phase fractions. However, with an increase of the disperse phase fraction, the cross-shaped junction is superior.


AIChE Journal ◽  
2017 ◽  
Vol 64 (4) ◽  
pp. 1412-1423 ◽  
Author(s):  
Shuainan Zhao ◽  
Zhengya Dong ◽  
Chaoqun Yao ◽  
Zhenghui Wen ◽  
Guangwen Chen ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 226
Author(s):  
Rashal Abed ◽  
Mohamed M. Hussein ◽  
Wael H. Ahmed ◽  
Sherif Abdou

Airlift pumps can be used in the aquaculture industry to provide aeration while concurrently moving water utilizing the dynamics of two-phase flow in the pump riser. The oxygen mass transfer that occurs from the injected compressed air to the water in the aquaculture systems can be experimentally investigated to determine the pump aeration capabilities. The objective of this study is to evaluate the effects of various airflow rates as well as the injection methods on the oxygen transfer rate within a dual injector airlift pump system. Experiments were conducted using an airlift pump connected to a vertical pump riser within a recirculating system. Both two-phase flow patterns and the void fraction measurements were used to evaluate the dissolved oxygen mass transfer mechanism through the airlift pump. A dissolved oxygen (DO) sensor was used to determine the DO levels within the airlift pumping system at different operating conditions required by the pump. Flow visualization imaging and particle image velocimetry (PIV) measurements were performed in order to better understand the effects of the two-phase flow patterns on the aeration performance. It was found that the radial injection method reached the saturation point faster at lower airflow rates, whereas the axial method performed better as the airflow rates were increased. The standard oxygen transfer rate (SOTR) and standard aeration efficiency (SAE) were calculated and were found to strongly depend on the injection method as well as the two-phase flow patterns in the pump riser.


2013 ◽  
Vol 5 ◽  
pp. 256839
Author(s):  
Somchai Wongwises ◽  
Afshin J. Ghajar ◽  
Kwok-wing Chau ◽  
Octavio García Valladares ◽  
Balaram Kundu ◽  
...  

1982 ◽  
Vol 15 (4) ◽  
pp. 311-313 ◽  
Author(s):  
HIROYASU OHASHI ◽  
TAKUO SUGAWARA ◽  
KEN-ICHI KIKUCHI ◽  
MORITO TAKEDA

1986 ◽  
Vol 108 (3) ◽  
pp. 207-210 ◽  
Author(s):  
H. Furukawa ◽  
O. Shoham ◽  
J. P. Brill

A computational algorithm for predicting pressure and temperature profiles for compositional two-phase flow in pipelines has been developed. The algorithm is based on the coupling of the momentum and energy balance equations and the phase behavior of the flowing fluids. Mass transfer between the gas and the liquid phases is treated rigorously through flash calculations, making the algorithm capable of handling retrograde condensation. Temperatures can be predicted by applying the enthalpy balance equation iteratively. However, it was found that the explicit Coutler and Bardon analytical solution for the temperature profile yields nearly identical results for horizontal and near horizontal flow.


AIChE Journal ◽  
1970 ◽  
Vol 16 (5) ◽  
pp. 705-711 ◽  
Author(s):  
John C. Jepsen

Sign in / Sign up

Export Citation Format

Share Document